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Chapter 1
Risk Matrix: Foundations and Overview

At the beginning of 2020, the COVID-19 swept across China, and then spread to
the whole world. This disease made a tremendous impact on human beings’ lives,
economics, and so on. So far, people are still suffering the serious effect of COVID-
19, andGovernments of different countries appeal to citizens to stay cautious to avoid
the health risk. Besides, lots of enterprises sustained huge losses and even collapsed.
This is the biggest event recently that makes somany people deeply feel the influence
of risk, and consider the importance of risk management.

So, what is “risk?” When talking about risks, people usually refer to different
issues. For example, risk may be referred to as the possibility of an adverse event’s
occurrence; risk is the combination of the uncertainty and severity of a consequence;
risk is the deviation froma reference value (onemay refer to Society forRiskAnalysis
Glossary for more definition of risk). Although people usually say we should avoid a
certain risk, like the health risk, risk is not always referred to as the adverse aspect of
an event (Park and Grant 2005; Lee et al. 2011; Orchowski et al. 2012). For example,
market risk in the financial field may result in possible gain or loss. However, it has
been shown that people caremore about the negative side of an eventwith uncertainty.
And thus adopting the right choices to make preferred consequences more probable
is what we aim to do facing a risk. Risk management is such a process that helps
minimize risk level through the main steps of risk identification, risk assessment,
and risk mitigation (Zhang 2016; Johnson and Swedlow 2021; Rostamzadeh et al.
2018). For example, in the case where people are under the threat of COVID-19,
she/he needs to identify all the possible sources that may cause the infection risk,
assess the consequence and probability of the risk, and take appropriate actions to
mitigate the risk according to her/his acceptance of the risk.

For a certain risk, a fairly important part is risk assessment when risk manage-
ment process is conducted, which focuses on measuring the quantitative value of the
risk, mainly answering whether the risk is tolerable (Aminbakhsh et al. 2013; Aven
2016; Hegde and Rokseth 2020; Lloyd-Jones et al. 2019). The accuracy of the risk
assessment result affects the risk mitigation strategies and then the really-happened
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2 1 Risk Matrix: Foundations and Overview

consequence on the stakeholders, and thus the risk assessment needs convincing
methods and tools.

In general, risk assessment methods could be divided into quantitative, quali-
tative, and semi-quantitative ones. Quantitative methods heavily rely on sufficient
data and thus are usually adopted in the fields with high-frequency data (Hong et al.
2020; Vatanpour et al. 2015). For example, when studying financial risks, we can
explore probability distribution-based methods like VaR (Value at Risk) to assess
the magnitude of the risk. However, in many cases, we usually suffer the flaw that
risk assessment data is scarce. For example, at the very beginning of a certain major
public health emergency, such as the COVID-19, we have little data to support a
quantitative assessment of this risk. At this point, the qualitative or semi-quantitative
risk assessment tools are the alternatives.

A typical semi-quantitative or quantitative risk assessment tool is the risk matrix,
which is what we discuss in this book. The incentive of studying the risk matrix is
driven by the wide application of this tool. For example, we may see a risk matrix in
a hospital, on a building site, on a financial management manual, and so on. Despite
the popularity of this tool, researchers have found that the risk matrix sssssss several
theoretical flaws, which may prevent the accuracy of the risk assessment result.
Therefore, in this book, we will focus on resolving some fundamental problems
related to risk matrix, and the proposed solution will alleviate its shortages.

1.1 What Is Risk Matrix?

When we talk about the risk matrix, as we see in many cases, it is usually a colorful
graph. A very simple risk matrix is shown in Fig. 1.1. The risk matrix measures a
certain risk by two input dimensions which are usually presented by consequence
and probability, and the cell corresponding to each combination of dimensions has a
color, such as green, yellow, and red, to reflect the risk level (Cox 2008). For clearly
understanding risk matrix, the following basic concepts should be clarified.

Fig. 1.1 A simple 2 × 2 risk
matrix

Consequence

Probability

Low High

Low
H
igh
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1.1.1 What Is Risk?

As stated before, risk is differently defined in different cases. Although ISO (Inter-
national Standardization Organization) defines risk as the effect of uncertainty on
objectives, the definition is not that concrete. The Society for Risk Analysis Glossary
summarized the following qualitative definitions of risk that are commonly adopted
(SRA 2018):

(1) Risk is the possibility of an unfortunate occurrence.
(2) Risk is the potential for realization of unwanted, negative consequences of an

event.
(3) Risk is exposure to a proposition (e.g., the occurrence of a loss) of which one

is uncertain.
(4) Risk is the consequences of the activity and associated uncertainties.
(5) Risk is uncertainty about and severity of the consequences of an activity with

respect to something that humans value.
(6) Risk is the occurrences of some specified consequences of the activity and

associated uncertainties.
(7) Risk is the deviation from a reference value and associated uncertainties.

The diversification of risk definition is derived from our understanding of the
core term, i.e., uncertainty, of the corresponding event in different situations. Risk
essentially refers to future events, which is full of different kinds of uncertainty. For
example, when we discuss (a) a possible future natural disaster, (b) a future financial
investment, (c) a future production of uniformed goods, and so on, we may describe
these future uncertainties in various ways. For case (a), definitions (1) and (2) are
more suitable for the risk in a possible natural disaster since the uncertainty is always
from the unwanted aspect. Definition (4) matches case (b) because in an investment
one may get different returns with an uncertain probability. And when the uniformed
goods are produced, definition (7) works for understanding risks, since one may care
how much a produced good varies given its specification.

In general, the definition of risk is related to three elements, i.e., a certain objec-
tive (which may face an event that is uncertain), the consequence of an event on the
objective, and the uncertainty of the consequence (uncertain about whether a conse-
quence/event will happen or what is the consequence). We can briefly define risk in
a triplet, namely (objective, consequence|event , uncertainty|consequence ).

1.1.2 What Is Risk Measure

Risk definition tells us what is risk, and for further riskmanagement, we should know
how big is the risk. That is what risk measure aims to do. Generally speaking, risk
measure outputs the magnitude of a given risk considering some characteristics that
the stakeholders value.



4 1 Risk Matrix: Foundations and Overview

As we stated before, the definitions of risk are different as the risk assessment
contexts change. Intuitively, the risk measure should correspond to risk definition.
In other words, risk measures are various in different situations. For example, in a
situation where the consequence is so severe that once the adverse event happens,
the risk is unbearable, we need only to consider the uncertainty about the event’s
happening, and the probability of the event is a feasible risk measure (Aven 2012),
namely,

risk = p = probabili t y o f the event ′s occurence, (1.1)

where p is the abbreviation and probabili t y o f the event is the detailed
explanation (it is the same in the following equations in this subsection).

When we should consider both the consequence of an event and the uncertainty
of the event’s happening, the situations can be further divided as follows. For one
case, where once an event occurs, the consequence is pre-assessed and nearly fixed,
the risk could be measured as (Willis 2007):

risk = p × c = probabili t y o f the event ′ occurence × consequence the event brings. (1.2)

For another case, where we know the event will happen for sure, but we don’t
know what are the possible consequences, the following risk measure is applicable
(Ale et al. 2015):

risk =
∑

i

pi × ci =
∑

i

probabili t y o f occurence i × consequence i o f the event . (1.3)

If we have a reference value of the consequence, in the above case, the risk could
also be measured by the variation of the consequence (Girardi and Ergun 2013),
namely,

risk = Expectation(consequence − expected consequence). (1.4)

Wewill not discuss other riskmeasures in this book, even though there are still lots
of various risk measures in different fields, such as VaR (value at risk), CVaR (condi-
tional value at risk), and so on, that are widely used in financial risk management
and so on.

1.1.3 Objective Risk Measure Versus Subjective Risk Measure

One may find that to measure a risk using any appropriate risk measures, we need to
obtain the estimation of the elements that the risk measure contains, such probability
and consequence. The accuracy of the estimation highly relies on the sufficiency and
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reliability of the related data. However, in many risk assessment contexts, we do not
have enough data supporting the adoption of data-relied risk measures.

Therefore, we can divide risk measures into two parts, one of which relies on
sufficient objective data, and the other may use subjective judgment.

We focus on the subjective risk measure. Let’s start with a very simple but widely
used risk measure as shown in Eq. (1.2), namely risk = p × c. Probability could
be interpreted as the frequentist probability and be measured by statistical methods
when data is sufficient, and it could also be interpreted as subjective probability and
be measured just relying on the risk assessor’s knowledge if data is scarce. When
the measure risk = p × c is adopted, it is assumed that the consequence of a risk is
fixed, namely, we should pre-estimate the effect that an adverse event will bring once
it occurs. It could be measured or estimated according to historical data or expertise.
Given the estimation of probability and consequence of the risk, the risk could be
measured objectively or subjectively (the measure risk = p × c is also suitable for
objective risk assessment).

As we can see in Fig. 1.1, in a risk matrix, the risk measure is not the same as we
usually use like risk = p × c. Actually, the magnitude of a risk is a logical mapping
of consequence and probability (in Fig. 1.1):

If consequence is “Low” and probability is “Low,” then the risk is “Green.”
If consequence is “Low” and probability is “High,” then the risk is “Yellow.”
If consequence is “High” and probability is “Low,” then the risk is “Yellow.”
If consequence is “High” and probability is “High,” then the risk is “Red.”
In a risk matrix, the estimation of consequence and probability is discrete, i.e.,

the stakeholders need to answer whether the consequence/probability is low or high.
One may find that actually there is an additional mapping from the estimated value
of consequence/probability to its rating. This mapping is different for different stake-
holders. For example, given a certain value of consequence like 1, for stakeholder
A, she/he may consider 1 as a “low” consequence, but for B, she/he may take it as
“high.”

The explanation for the above phenomenon is if an objective risk measure is
adopted, it only outputs the objective value of the risk, which is not affected by
the risk assessor’s personal characteristic. We call the process of obtaining the risk
using a risk measure as process p1, and the process of assessing whether the risk is
acceptable as process p2. Ony finds that when we use objective risk measures, the
two processes are sequential, namely, p1 goes first and then p2. While when we use
subjective risk measures, the two processes overlap, namely, one may estimate the
risk considering whether the consequence, the probability, or even the risk itself, is
acceptable, namely, low or high, at the process of p1. This mixture of p1 and p2
reveals that the study of risk matrix should involve more issues that are related to
human subjectivity.
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1.2 Theoretical Flaws and the Topics in This Book

1.2.1 Some Theoretical Flaws of Risk Matrix

Considering the simplicity nature, risk matrix is widely used in various produc-
tion activities including climate environment, public health, industrial production,
commercial investment, and so on (Iverson et al. 2012; IEC 2009). In most cases,
risk matrix plays the role of a specific graphical display, which involves risk commu-
nication between risk matrix designers and users. For example, for quick response
to acute public health events, WHO (World Health Organization) published a quick
risk assessment guideline where likelihood and consequence ratings of a disease are
evaluated by answering several rigorously designed questions, and then a risk matrix
is given to output the risk ratings (WHO 2012) (see Fig. 1.2).

Despite the wide usage of risk matrix, it suffers some fundamental flaws. Cox first
proposed a systematic analysis of the risk matrix in the top journal Risk Analysis
in the field of risk management in 2008 (Cox 2008). The analysis points out several
shortcomings of the risk matrix:

(1) The risk matrix has false resolution. In the risk matrix, according to the defi-
nition of risk, there are some points whose value is greater than others, but
they are assigned a lower risk level, which violates the most basic principle
of monotonicity. For example, in Fig. 1.3, the point (0.3, 0.9) belongs to the
green area, and the point (0.35, 0.7) belongs to the yellow area, but the value
of the former (0.27) is greater than the latter (0.265).

(2) The risk ranking obtained according to the risk matrix violates the transfer
invariance. For multiple risks, when their consequences all change a value at

Fig. 1.2 A risk matrix used
for rapid risk assessment of
acute public health events
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Fig. 1.3 A 3 × 3 risk matrix
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the same time, the priority order of risks will change. For example, for three
risks, the consequences and probabilities are (A) (0.95, 1), (B) (0.4, 0.5), (C)
(0.15, 1). Obviously, according to the risk level in Fig. 1.3, (A) > (B) > (C), but
when the consequences are reduced by 0.1 at the same time, according to the
risk level in Fig. 1.3, (A) > (B) = (C), since (C) and (B) have the same degree
of consequences, both of which are low.

(3) Relying only on the rating of the risk matrix does not necessarily make the
correct decision. Different risk control may correspond to different control
costs, and risk control measures depend on budget constraints. Therefore,
the risk rating does not necessarily directly correspond to the risk mitigation
priority. For example, (a) changing risk A from 100 to 80 requires a cost of 30,
(b) changing risk B from 50 to 10 requires a cost of 40, and (c) changing risk
C from 25 to 0 requires a cost of 20. The elimination priority of these three
risks is constrained by the budget: when the budget is 20, risk C has the highest
priority; when the budget is 40, risk B has the highest priority (the risk value
of 40 can be eliminated); when the budget is 60, it is optimal to mitigate risks
B and C at the same time.

(4) Different decision makers have different classifications of consequences (or
probability), which leads to different assessments of risks. For example, for a
certain consequence value like 0.5, some may consider it as “Medium,” which
some may consider it as “High.”

(5) Risk attitudes will affect the assessment of risks. Obviously, for two risk asses-
sors, one of which is risk-averse, and the other risk-neutral, the risk rating
should not always be the same using the same risk matrix.

After Cox first proposed a systematic analysis of the shortcomings of the risk
matrix itself, other scholars have also put forward discussions on the theory and
application of the risk matrix.

Smith et al. pointed out the possible deviation of input data in the risk matrix
(Smith et al. 2009). (1) People have subjective cognitive biases in the understanding
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of probability. (2) According to the prospect theory, people have different utilities at
different consequences. (3) When people evaluate the consequences or probabilities,
there will be a phenomenon that the evaluation is concentrated in the middle part.
And (4) The consequences and probability data will appear linear relationship. All
these phenomena show that when using the risk matrix, decision-makers cannot give
accurate assessments of consequences and probabilities. Therefore, the final risk
assessment results lack accuracy.

Ball and Watt asked some experimental participants to evaluate different risks
based on a risk matrix. They found that even for the same risk assessor, his/her
assessment of risk will change over time (Ball and Watt 2013). This shows that just
using a risk matrix for risk assessment does not accurately reflect the magnitude of
the risk.

In his review of the risk matrix, Duijm pointed out that (1) The difference in
subjective judgment is due to people’s cognitive bias. The use of qualitative descrip-
tions of consequences and probabilities (such as the use of adjectives) will exacerbate
this cognitive bias. Therefore, It is recommended to use a quantitative description
(using an interval to describe an input category); (2) Regarding the integration of
risk matrices, like ISO’s point of view, Duijm believes that there are two difficulties
affecting the integration of risk matrices: the inability to compare different vocabu-
lary descriptions of the input categories, and different risk types cannot be compared.
Therefore, it is considered that the risk matrix is difficult to be aggregated (Duijm
2015; IEC 2009).

1.2.2 The Topics in This Book

Main Topic 1: Rating scheme design of risk matrix

Given all the flaws of risk matrix that were stated before, we think the fundamental
problem is thatwe lack a convincing scientific riskmatrix designmethod to overcome
the flaws that exist in the risk matrix designed using some traditional methods.

Designing the rating scheme of a risk matrix essentially answers two questions:

(1) how many risk ratings (denoted by colors as shown in Fig. 1.3) should the risk
matrix have, and

(2) how to assign risk ratings to each cell (a cell is the combination of a consequence
and a likelihood) that the risk matrix contains.

Figure 1.4 presents a graphic illustration of the risk matrix design. Although we
may see so many risk matrices used in various situations, few of these applications
explain clearly how the risk matrices are designed, and thus the risk assessment
results are questionable.

Different decision makers may produce different mappings of the two inputs
to risk categories based on their own methods to assess a risk. However, even if
the designs of a risk matrix may be different from different designers, the rating
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Fig. 1.4 The illustration of
risk matrix’s rating scheme
design
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schemes cannot be entirely arbitrary. At a minimum, risk should be designed as a
monotonically increasing function of consequences and likelihood. Thus, we believe
that while risk matrices may capture subjective assessments, they should be designed
based on objective and recognized rules so that the users ensure they obtain relatively
reliable information from the risk matrices.

We should avoid believing that because we are using qualitative risk management
tools, the risk matrices should be designed in an entirely subjective way. What we
will discuss in this book attempts to assist the designers in designing risk matrices as
“reliably” as possible so that users will reach better evaluated and considered deci-
sions. Although different designers may have different designs, we merely attempt
to provide a more effective method to support the design process.

Main Topic 2: Risk aggregation of risk matrices.

Topic 1 focuses on one specific risk matrix. Another topic we concern is the
aggregation of risk matrices, which is related to multiple risk matrices.

We discuss the topic of risk aggregation of risk matrices because, in practice, a
risk assessment context usually contains several risks and decision makers need to
consider the overall risk rather than individual risks (Bernard et al. 2014; Acharya
et al. 2013;Kouvelis et al. 2012). Risk aggregation is a common topic in data-frequent
fields like finance.However, the extant study on aggregation of riskmatrices is sparse.
Some issues that hinder aggregation of risk matrices are: (1) A risk matrix is essen-
tially a qualitative tool and thus ratings of risks are often described only qualitatively,
whichmakes it difficult to compare aggregated risks of different scenarios (a scenario
means a case where each risk considered has a particular rating). For example, it is
difficult to say how many low risks are equivalent to a medium one. Also, (2) conse-
quences of different types of risks are usually different and cannot be compared,
such as the consequences of economic loss, casualties, and so on (Duijm 2015).
As a result, ISO (IEC 2009) states that ‘risks cannot be aggregated.’ To resolve the
problem, in this book, another main topic is about how to aggregate risks assessed
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by risk matrices. Since a particular risk is measured by a predesigned risk matrix,
the concept of “aggregating risk matrices” is substituted for “aggregating individual
risks measured by risk matrices” for simplicity (Duijm 2015; IEC 2009).

How to understand the aggregation of risk matrices and the core problem of
aggregation? In Fig. 1.3, consequence and likelihood are qualitatively described as
‘Low’, ‘Medium’ and ‘High’. However, if ratings of inputs are described in the
same way, mathematical operations of risk matrices may become very difficult. For
example, if three 3 × 3 risk matrices are aggregated, ‘Green (L + L) + Green (L +
L) + Green (L + L)’, where the output of consequence ‘Low’ and likelihood ‘Low’,
denoted by ‘L + L’ and so on, is the lowest risk aggregation situation. (1) We care
what is the risk rating of this combination of three individual risk matrices? And (2)
which of the two scenarios, one with three risk ratings ‘Green + Yellow + Red’ and
the other scenario with three risk ratings ‘Yellow + Yellow + Yellow’, should have
a higher priority?

Rating scheme design and risk aggregation of risk matrices are discussed in detail
in the remaining of this book. We hope the resolution of these two problems help the
better usage of this popular risk assessment tool.
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Chapter 2
Different Types of Risk Matrices
and Typical Applications

2.1 Origin and Fundamental Model

2.1.1 The Origin of the Risk Matrix

The term of risk has a long history, and the assessment and management of risk can
be traced back to before Greek and Roman times. However, formal risk analysis has
only begun to appear in modern times. In the 1870s, under the promotion of the U.S.
Environmental Protection Agency, the role of risk assessment in management was
enhanced, leading to the professionalization of risk analysis. During the 1990s, the
concept of value-at-risk was widely used in the economic field, and research on risk
also developed rapidly in various industries.

A significant prerequisite for risk assessment is a deep understanding of the conno-
tation of risk. Some researchers summarize it as a collection of uncertain damage
events and their probabilities and consequences (Kaplan 1997). And some scholars
believe that the risk can be either the uncertain event itself that will cause loss, the
probability of the uncertain event, or the expected value of the loss caused by the
uncertain event. Generally speaking, the researchers’ understanding of the connota-
tion of risk is basically similar: the necessary factors that constitute risk include risk
scenario, risk probability, and risk loss. The risk matrix assessment method directly
and concisely reflects the understanding of the connotation of risk, which is one of
the reasons why it is widely used.

In 1995, the US Air Force Electronic System Center (ESC) systematically
proposed and widely used the risk matrix assessment method in the life cycle risk
assessment of the acquisition project for the first time (Ni et al. 2010). Since 1996, a
large number of ESC projects have adopted the risk matrix method to assess project
risks. The risk matrix does not have a completely fixed form, and the specific form
and content are also closely related to the subjectivity of decision-makers (Ayyub
2003; Franks and Maddison 2006). Even though, the risk matrix has its fundamental
structure as shown in the following.
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2.1.2 Fundamental Mathematical Model of Risk Matrix

A risk matrix can be described in the form of a grading function:

R = f (p, c) = [Ri j ], when

{
pi ≤ p < pi+1

ci ≤ c < ci+1
,

where Ri j represents the risk ranking corresponding to the i-th level of risk probability
and the j-th level of risk consequence in the risk matrix; pi and li represents the lower
limit of the i-th level of risk probability and the j-th level of risk loss respectively;
pi+1 and ci + 1 respectively correspond to the upper limit.

Table 2.1 exhibits a typical risk matrix in the form of table, and we see that a risk
matrix mainly includes three aspects: the category of consequence and probability,
the number of ratings the riskmatrix totally have, and themapping of a risk ratingwith
the combination of a consequence and a probability. The three aspects correspond
to the use process of risk matrix. Firstly, we should know how to categorize the
consequence and probability (how many categories there should be and what is the
category of a certain consequence/probability given its estimated value). Then we
should know how many risk ratings should there be, even though we are used to
dividing the risk ratings into Low, Medium, and High. And lastly, we should know

Table 2.1 A typical risk matrix

Probability
level

Consequences level

1 2 3 4 5

1 Negligible Negligible Receivability Receivability Reasonable
control

2 Negligible Negligible receivability Reasonable
control

Strict control

3 Receivability Receivability Reasonable
control

Strict control Unacceptable

4 Receivability Reasonable
control

Strict control Unacceptable Unacceptable

5 Reasonable
control

Strict control Unacceptable Unacceptable Unacceptable
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what the risk rating is (or what the mapping is, or what is the function f ), given the
category of consequence and probability of a risk.

2.2 Structure and the Design of Different Kinds of Risk
Matrix

The riskmatrixmethod iswidely adopted as a convenient and efficient risk evaluation
tool inmany fields, such as engineering and software field, etc. (Ale et al. 2015; Smith
et al. 2009; Hsu et al. 2016; Oliveira et al. 2018). The structure of the risk matrix is
relatively simple, as shown in Fig. 2.1. There are two axes in the risk matrix named
the horizontal axis and the vertical axis (Cox 2008; Levine 2012). The horizontal
axis indicates the severity of risk consequences, and the vertical axis represents the
probability of risk occurrence. When the horizontal and vertical axes are divided into
intervals according to a certain ratio, the intersection of each row interval and column
interval becomes the smallest unit of the risk matrix, i.e., the cell of the risk matrix.
Generally, if it has M categories of consequence and N categories of likelihood, it
has M × N cells.

In addition, in different application scenarios, risk matrices can be classified
into qualitative risk matrices, semi-quantitative risk matrices, and quantitative risk
matrices (Hong et al. 2020; Vatanpour et al. 2015). The structure and characteristics
of the risk matrix will be further introduced accompanied by different types of risk
matrices.

Fig. 2.1 A 3 × 3 risk matrix
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2.2.1 Qualitative Risk Matrix

Qualitative risk matrix refers to a risk matrix where the categories of consequence
and likelihood are described used adjectives like “High,” “Medium,” “Low.” The risk
matrices in Figs. 2.1 and 2.2 are typical qualitative ones.

When using a qualitative risk matrix, one should first judge the categories of
the assessed risk’s consequence and likelihood, and then the designed risk matrix
outputs the risk rating. In a qualitative risk matrix, there is no explicit risk measure.
For example, what is the risk if both the consequence and likelihood are categorized
as “High.”

For qualitative risk matrices, several scholars have summarized some design rules
from practice: cells along a diagonal with the same slope have the same risk and
adjacent risks are classified the same rating. If the above rule works, it means
some combinations of qualitative descriptions of risk criteria have the same degree
of risk and it is more likely that risk is measured by the formula “risk = consequence
+ likelihood”. For example, both consequences and likelihood are categorized as
“high”, “medium” or “low”, then “high + low” = “medium + medium” = “low +
high” or “high +medium”= “medium + high” or other alternative descriptions. By
the rule, cells on adjacent diagonals can be classified together. However, there is no
definitive answer to the question of which diagonals should be classified together. It
is usually conducted based on decision-makers’ knowledge (Duijm 2015). The risk
matrix was rated by Pritchard et al. to assess the risk of drilling hazards according to
the above rule (as shown in Fig. 2.2) and numerical representation of risk priorities
(Pickering and Cowley 2010).

Fig. 2.2 The risk matrix
designed by Pritchard et al.
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Hewett et al. applied the rule in the design of risk matrices for managing agri-
cultural pollution (Hewett et al. 2004). Other examples include Cook’s risk matrix
rating scheme for a security management system, Cox’s design of the simplest 2 × 2
risk matrix, and so on (Cook 2008). The above rule is applied primarily when quali-
tative language is used to describe risk criteria, it is a crude qualitative category rule,
which cannot be used when risk preference appears. In addition, in terms of rating
the qualitative risk matrix, Holt et al. used a different utility function to determine a
rank of a cell. Specifically, if there are still three categories for the two input criteria,
then the utility function corresponding to the “minimum matrix” is Minimum, in
other words, the risk rating depends on the lower of the consequence and likelihood
ratings, so Minimum (very low, high) = very low (Holt et al. 2014). However, the
flaw in this approach, is that the dimensions of consequence and likelihood must be
equivalent.

2.2.2 Semi-quantitative Risk Matrices

In practice, the semi-quantitative expression is used to distinguish qualitative input
categories more intuitively, whereby the categories of consequence and likelihood
are expressed in discrete ordinal numbers, such as the risk matrix described by 1, 2,
and 3, which means a severer consequence or a greater likelihood has a higher score
(Soon and Baines 2015).

In a semi-quantitative riskmatrix, the riskmeasure risk=consequence× likelihood
is usually employed and each cell in a risk matrix gets a score. The decision-maker
will be close to each other several scores are classified as the same rating. Accord-
ingly, its rating rule can be summarized as: cells whose semi-quantitative scores are
in the same interval have the same rating. Dethlefs and Chastain designed the risk
matrix concerning the rating rules for semi-quantitative risk matrices, as shown in
Fig. 2.3. The rule has been used in other literature, such as the rating of hazard risk
assessment matrices (Donoghue 2001).

The semi-quantitative risk matrix gives a more reliable rating scheme based on
quantitative inputs than the qualitative risk matrix rating rules, but there are still
some problems that can’t be ignored: (1) Threshold setting for both ratings is entirely
subjective and there are no criteria for selecting thresholds. (2) Scores are assigned
to categories of consequence and likelihood in the form of an arithmetic sequence,
which means the importance of these categories grows evenly. This is not always
the case, however, as Smithson et al. list a probability phrase numerical bootstrap
Table 2.2, where probability expressions have different intervals, which are not even
(Smithson et al. 2012). (3) The ranking of risks varies when different ordinal numbers
are applied to the two input categories (Smithson et al. 2012).
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Fig. 2.3 Risk matrix
designed by Dethlefs and
Chastain

1 1 1 1

1 1 2 2

21 2 3

1 2 3 3

Consequence

Li
ke

lih
oo

d

1

2 2 3 4

2

2

3

4

4

2 3 4 5

1
2

3
4

5

Minor Medium Significant Major Severe

Im
pr

ob
ab

le
R

em
ot

e
R

ar
e

Pr
ob

ab
le

Table 2.2 IPCC probability
phrases numerical guide

Phrase IPCC range (%)

Virtually certain >99

Extremely likely >95

Very likely >90

Likely >66

More likely than not >50

About as likely as not 33–66

Unlikely <33

Very unlikely <10

Extremely unlikely <5

Exceptionally unlikely <1

2.2.3 Quantitative Risk Matrices

As discussed earlier, one of the drawbacks of the semi-quantitative classification of
inputs is that it does not reflect the true differences between the two categories. Thus,
quantitative descriptions of inputs are employed in somepractices and research (Pick-
ering and Cowley 2010; Smith et al. 2009; Cox 2008). In quantitative descriptions,
the category corresponds to a numerical interval of the consequence or likelihood
instead of a specific score, for instance, “likely” corresponds to an interval [1/3, 2/3].

In the case of quantitative riskmatrices, it is possible that assigning several thresh-
olds of risk contours corresponding to numerical values, which may split a cell into
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Fig. 2.4 Risk matrix as
rated by Ruan et al.
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two or even more areas, Ruan et al. adopted the area approach to determine the even-
tual rank of a cell: the rank associated with the largest area in a cell is the eventual
rank of the cell (Ruan et al. 2015). As shown in Fig. 2.4, two risk contours separate a
3× 3 riskmatrix into three ranks, thus determining the eventual rank assigned to each
cell. Other more systematic design approaches are also available. For example, Cox
proposed three axioms to guide users in rating cells in risk matrices, namely weak
consistency axiom, between-ness axiom, and consistent coloring axiom (Cox 2008).
These three axioms express the relationships that should be fulfilled by cells of
different colors. Although risk matrices rated according to Cox’s axioms possess
reliable mathematical logic, there are still two remarkable drawbacks. One is that
the rating scheme of a risk matrix is not unique, the other is inadequate resolution.
It is therefore difficult to apply the rule in practice to rating the risk matrix. More
detailed risk matrix design methods will be introduced in Sect. 2.3.

2.3 Applications in Different Fields

Although the risk matrix has different types and can be differently used in different
fields, as a mature risk assessment tool, the use of the risk matrix has its systematic
process (Niyongabo et al. 2019). In the following, we will introduce in detail how to
use the risk matrix to evaluate risks and the application examples of the risk matrix
to further discuss the practical value of the risk matrix.

Risk assessment consists of three steps (or three sub-processes), which are risk
identification, risk analysis, and risk evaluation sub-processes (ISO 2009). Risk
identification is the first sub-process of the whole process of risk assessment. It
provides input for risk analysis and is the process of discovering, acknowledging,
and describing risks. Themethods of risk identificationmainly include brainstorming
method, questionnaire method, decomposition method, fault tree method, and so on.
Risk analysis is the second sub-process of the whole process of risk assessment. It is
the process of understanding the characteristic of risk and determining the level of
risk, which provides a basis for risk assessment and risk response decision-making.
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Risk evaluation is the third sub-process of the whole process of risk assessment. It is
the process of comparing the result with risk criteria to determine whether the risk
and/or its magnitude is acceptable or tolerable. The correct risk assessment will help
the organization to make decisions about risk response.

According to the process of risk assessment, risk matrix, as a tool of risk
assessment, is used as follows:

(1) Determine the subject and needs of the assessment, conduct a systematic
analysis on it, and give a risk definition;

(2) Carry out risk identification and determine risk factors that need to be assessed;
(3) Use specific methods such as expert judgment to conduct risk analysis to

describe the probability and consequence level of each risk factor;
(4) Categorize the probability and consequence level of risk matrix, design the risk

matrix, and carry out the risk evaluation of each risk situation according to the
risk matrix.

As we all know risk matrix is widely used for rapid risk assessment in the fields of
medical treatment and public health, food safety and public infrastructure operation,
etc. Next, we will introduce some typical cases to explain the application of it in
detail.

2.3.1 Food Safety Risk Assessment

Case: Rapid food safety risk assessment of compounds

The Food Safety Law of the People’s Republic of China, which came into force in
June, 2009, lays down that the State shall establish a food safety risk assessment
system to assess the risks of chemical, biological and physical hazards in food and
food additives. Over the past five years, China has launched multiple food safety risk
assessment actions and risk assessment approaches are gradually applied to food
safety field.

Codex Alimentarius defined risk as a function of the probability of an adverse
health effect and the severity of that effect, consequential to a hazard(s) in food.
Therefore, consequence and likelihood of adverse effects are key parameters used to
evaluate a risk in this health risk classification system.

To establish a risk matrix and classify the health risks of chemicals in food,
the following three steps are generally required: (1) determining the consequence
severity; (2) determining the likelihood of adverse effects when exposure to a hazard;
and (3) determining the risk level.

In the first step, when it comes to chemicals like regular environmental pollutants
and food additives, such data as hospitalization rate and prevalence rate is normally
not available. In this case, toxicity or severity of adverse effects can be used to
measure consequence resulted from a chemical. By referring to relevant materials,
acute toxicity (such as oral lethal dose in rats) and long-term toxicity (Carcinogenic
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Fig. 2.5 Risk matrix of food safety

degree, mutagenic degree, etc.) were used to jointly define the severity of damage to
human body caused by chemical substances.

In the second step, the probability of the adverse effect occurring should be consid-
ered. Due to lack of foodborne disease data, The exposure and dose–response data
concerning a given chemical could be used to estimate its chance to cause health
impacts.

In the final step, the food risk level of the evaluated compound is determined
according to the following risk matrix (Fig. 2.5).

2.3.2 Risk Assessment of Public Infrastructure Operation

Case: The Risk matrix-Based assessment of Shenzhen metro operation

In recent years, with the rapid development of urbanization, the pressure of urban
traffic is increasing rapidly. The rail transit industry shoulders the important task of
building an urban public transport system. In the context of the great development
of rail transit, Shenzhen Metro has been in the forefront of China. As of December
31, 2020, there are 11 metro lines in operation in Shenzhen, including line 1, line 2,
line 3, line 4, line 5, line 6, line 7, line 8, line 9, line 10 and line 11. The total length
of metro lines in the city is 411 km, with 283 stations.

ShenzhenMetro always regards safety as the foundation of its operation.However,
despite the outstanding achievements in operational security, there are still potential
operational risks. Inaccurate grasp of operational risks will affect the follow-up risk
management process and seriously threaten the safety of people’s lives. Metro oper-
ation risk refers to the impact of uncertainty in the process of metro operation and
management on the production objectives of metro operation, and the impact can be
comprehensively measured from two aspects: the severity of the consequences of
the risk and the probability of the risk.
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Basedon the above analysis, the following riskmatrix is constructed to evaluate the
operation risk of ShenzhenMetro (Fig. 2.6). An expert group composed of ten experts
that including station service safety engineer, Electromechanical Safety Engineer,
automation safety engineer, maintenance center safety engineer, safety supervision
engineer and metro public security, has carried out risk identification. Nine risks
are identified at last. They are signal system risk, vehicle system risk, power supply
system risk, civil construction risk, safety management risk, fire protection system
risk, mechanical and electrical equipment risk, ticketing system risk and external
environment risk.

After risk analysis and evaluation, the rating of each risk factor is obtained. Taking
the fire protection system risk as an example, the risk level of these fire protection
system risk factors are obtained by designing questionnaire, as shown in theTable 2.3.
Among all the risk factors, the risk of arson, misoperation of gas fire extinguishing
system and insufficient resistance of solenoid valve of gas fire extinguishing system
whose consequence is more serious and the probability is higher is undoubtedly the
highest. Although the probability of false fire alarm linkage factor in FAS system is
relatively high, the risk level is not the highest. This is because the risk level does
not entirely depend on the risk probability or consequence, but on the combinations
of both, that is, the form of risk measurement.

2.3.3 Medical and Health Risk Assessment

Case: Rapid risk assessment of solid medical wastes: a case study in Burundi

Presence of infectious agents, toxic chemicals, radioactivity, used sharps, or biolog-
ically aggressive pharmaceuticals in solid medical waste (SMW) will have serious
health effects when people are exposed to them. However, according to a survey
conducted in Bujumbura, Burundi in 2019, current classification system of SMW in
the national guidelines was not appropriate for safe collection and disposal. Patho-
logical wastes, pharmaceutical wastes and discarded medical plastics, and absorbent
cotton and placenta were main types of SMW, accounting for 84.4% from the health-
care facilities (HCFs). No HCFs followed the national guidelines completely, and
most medical wastes have not been properly managed from the source separation
stage. The generation rate per bed and the amounts of medical wastes per health
care worker were 3.6 and 5.9 times higher in public HCFs than those in private
HCFs, respectively, while the management practices of public HCFs were worse
than those of private HCFs. Storage of medical wastes was the least managed step
in the HCFs. All SMWs, HCFs, and people involved in SMW management were at
very high risk or high risk. Hence, the assessment and specific description of risk in
the SMWmanagement process from generation to storage is imperative for reducing
the unnecessary losses.

The risk from generation to storage in 12 HCFs in Bujumbura, Burundi, was
assessed with the risk matrix below. Risk matrix a is used for assessing the risk of
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Table 2.3 Risk rating of public infrastructure operation

Sequence number Fire system risk
factors

Consequence score Probability score Risk rating

01 Arson 7 5 R1

02 The gas fire
extinguishing
system was
misoperated

5 6 R1

03 Invalid fire
protection facilities

4 4 R3

04 Short circuit of
electrical
equipment

2 4 R4

05 FAS system
misalarms fire
alarm linkage

3 7 R2

06 Bad function of fire
escape passage

6 3 R3

07 The solenoid valve
of gas fire
extinguishing
System has
insufficient
resistance ability

5 7 R1

SMW and HCFs, b is used for assessing the risk of people involved during SMW
management in 12 HCFs.

Currently, the consequence of all SMWs and HCFs is severe and the likelihood
of the severe consequence is almost certain. Undoubtedly, all SMWs and HCFs are
of very high risks (the rating colored red), and improving the overall management
practices is essential to reducing risk. Reducing exposure through segregation and
safe storage may reduce the risk to some extent, but they are still of high risk as
shown in the yellow region in Fig. 2.7a. To control and reduce risk to a safe low level
(green), it is necessary to use additional measures such as disinfection of infectious
wastes and medical sharps, and to implement safe and detailed guidelines for toxic
chemicals and radioactive wastes.

As shown inmatrix (b),most people including staffs and neighbors are at very high
or high risk levels. Their potential risk fromSMWdepends on themanagement status
and the frequency of contact with the SMW in the HCFs. Medical staffs, patients
and waste workers are directly or indirectly involved from generation to storage
and they should be exposed to SMW on a regular basis during SMW management.
Because current overall SMW management practices were poor and those involved
are not protected safely, they can be classified as very high risk (red color). Visitors
and residents around HCFs are less likely to be exposed directly to SMW than
hospital staff, but the risk level is at least high (orange or red) considering poor SMW
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management status, especially the storage stages in the HCFs. Safe classification and
segregation can reduce the risk to a certain extent but reduce it to a low-risk level,
there is a need for safe protection of staff and workers, proper use of equipment, and
investment of infrastructure for the safe storage system.
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Chapter 3
Rating Scheme Design Methods

3.1 Summary of Some Unwritten Rules

The accuracy of risk matrix design directly affects the accuracy of risk assessment
by decision-makers using risk matrix, but there is no uniform design standard yet.
Therefore, the lack of a standardized design mechanism of the risk matrix is one
of the most important shortcomings of the risk matrix. we begin our review of the
risk matrix assessment program by exploring three questions: first, how to classify
two inputs (i.e., consequence and likelihood); Second, how to measure risk in a risk
matrix; And last, how to categorize different risks.

3.1.1 Input Classification

Measuring a specific risk involves an assessment of the two input dimensions of the
risk matrix consequence and likelihood. There are various measures of risk, which
are different in the definition of risk due to variation, value at risk, etc. In the risk
matrix, this old-fashioned risk metric is usually used with the expected loss (the
product of the consequence and the likelihood). Therefore, in the risk matrix, we
use the two input criteria of consequence and likelihood to assess risk. According to
the classification of these two input criteria, the risk matrix can be divided into three
categories: qualitative, semi-quantitative, andquantitative. The qualitative riskmatrix
describes the consequence and likelihood in qualitative language as “high, medium,
and low” (Garvey et al. 1998). For semi-quantitative risk matrices, to distinguish
the categories of their qualitative inputs, the categories entered are represented by
ascending scores, such as 1, 2, 3, etc. (higher scores indicate more serious or more
likely results). In the quantitative risk matrix, the category no longer corresponds to
a particular value, but a numerical interval corresponding to the consequence and
likelihood, for example, “seldom” corresponds to the interval of [0.4, 0.5].
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For a qualitative risk matrix, the extent of the consequence or likelihood
is primarily determined by the user based on subjective experience. The semi-
quantitative risk matrix quantifies qualitative descriptions to match different scores
for the categories of the consequence and likelihood input criteria. However, both
types of risk matrices are based on subjective empirical judgments to classify input
categories and are not classified according to quantitative criteria. So different users
can divide the same risk consequence or likelihood into different categories. This
is why many researchers recommend the use of quantitative risk matrices, which
provide a quantitative description of each category of results or possibilities using
numerical intervals (Pritchard et al. 2010; Smith et al. 2009). While the division of
consequence and likelihood inputs may be approximate for a single user or designer,
it provides an opportunity for them to agree on which division is most reasonable in
a particular situation. Therefore, a recognized standardized input classification will
make the classification of risks more widely accepted. This is why the ISO proposes
to increase the intervals of consequence and likelihood (Hsu et al. 2016; Oliveira
et al. 2015; Bao et al. 2016).

3.1.2 Measure of Risks

Since themagnitude of the consequence and likelihood are not clear due to subjective
judgments, the risk measured by expected loss (the product of the consequence and
the likelihood) cannot be well reflected in the qualitative risk matrix. The risk in a
qualitative riskmatrix can be approximated as amonotonically increasing function of
consequence and likelihood, for example, riskswith “medium”consequence and like-
lihood are more severe than risks with “low” consequence and likelihood. However,
if the two input dimensions of the risk matrix are not quantitatively measured, such
as one risk with “low” consequence and “high” likelihood, and the other risk with
“high” consequence and low likelihood, the two theoretical risks are incorrectly
ranked.

A semi-quantitative risk matrix can define risk as the product of the consequence
and the likelihood (MacKenzie 2014; Ball et al. 2013). But this can be problematic if
both the consequence and the likelihood input dimensions are scaled at the same. For
example, the “likely” corresponding score is “3”, and the “very likely” corresponding
score is “4”, and the interval between the “likely” and the “very likely” is “1”, but
the user thinks that “likely” corresponds to the interval (66%, 90%), “very likely”
corresponds to the interval (90%, 95%), so the interval between the two intervals is
not proportional to the score (Iverson et al. 2012). And using different ordinals to
describe the level of consequence and the likelihood, the ranking of the risks will
change. For example, using 1, 2, 3… to describe the categories of consequence and
the likelihood and using 5, 4, 3… to describe the inputs, the resulting risk rankings are
different, so the ranking according to the risk of the product is not accurate (Thomas
et al. 2014).
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In a semi-quantitative risk matrix, each cell is treated as an independent point, and
this number of points is finite. For the quantitative risk matrix, there are infinite risk
points in each cell, because the scale is continuous, and the risk value corresponding
to each risk point in the cell is represented by the product of the consequence and the
likelihood.When using a quantitative riskmatrix, the decision-makerwill classify the
risk as one of the cells, because the risk will correspond to a quantitative interval or
a point in the cell in the risk matrix. Therefore, it is a common setting in quantitative
risk matrix research that risk corresponds to infinite quantitative risk values in the
risk matrix.

3.1.3 Classification of Different Risks

For a qualitative risk matrix, that is, the categories of consequence and likelihood
are matrices described in qualitative language, the classification rules are not clear,
its design rules for along the same lines on the cell with the same risk level, adjacent
cell with the same level of risk, risk matrix for the similar reference Hewett et al.
(2004) and Holt et al. (2014).

Semi-quantitative riskmatrices, namely, categories of consequence and likelihood
are risk matrices described by discrete ordinals. The classification design rules are
explicit, that is, cells with risk values in the same interval have the same risk level.
However, the threshold setting in the semi-quantitative risk matrix is completely
dependent on subjectivity, and the risk ranking will change when different ordinals
are used to describe the consequence and likelihood (Ale et al. 2015; Goerlandt et al.
2016; Ruan et al. 2015).

Concerning quantitative risk research, Cox first presented a question of how
a reasonable risk matrix should be designed in his review of risk matrices. He
proposed three theorems for determining the category of risk matrices, namely weak
consistency axioms, intermediate axioms, and consistent coloring axioms (In Cox’s
theorem, the green risk is the lowest, yellow is second, and red is the highest risk).
These three theorems illustrate the relationship that should be satisfied between the
colors of different cells. The weak consistency axioms require that the risk value of
the points in the high-level cells be greater than the risk value in the low-level cells.
The intermediate axioms propose that given a line segment with a positive slope, and
that line segment passes through the red and green cells, then this line segment must
also pass through the yellow. The consistent coloring axioms require that all cells
below or through the green risk line be green, and all cells above or through the red
risk line are red. If one cell contains both the risk in the green cell a point with the
same value, which in turn contains the same point as the risk value in the red cell,
the cell is divided into yellow.

Although the risk matrix designed according to the Cox axioms satisfies strict
mathematical logic, there are two problems. First, the risk matrix rating scheme is
not unique. Cox also pointed this out, and he offers two possible rating schemes for a
4 × 4 risk matrix. Second, the number of risk levels is too small, only two risk levels



30 3 Rating Scheme Design Methods

are comparable (the green cell level is lower than the red cell, but there are some
points in the yellow cell that are lower than the green cells and some points higher
than the red cell, which is not comparable with the green or red cell). Obviously, in
practice, low resolution can lead to errors in certain decisions. It is therefore difficult
to use this rule in practice for risk matrix design.

3.2 Usage of Utility Functions to Design Qualitative Risk
Matrix Design

The criteria or risk factors were described by a set of discrete categories or ratings
that had linguistic definitions but that also had a definite order on a five-point scale.
For example, a particular risk factor might be described as very low, low, moderate,
high, or very high. The linguistic definitions are frequently supplemented by notes
and examples. They are essentially relative or comparative so that while it is not
usually possible to give the rating a quantitative interpretation.

It is based on a hierarchical decomposition of the problem into subconcepts and
finally to a finite set of basic attributes, allowing (discrete) distributions of ratings
to be used to describe the basic attributes. Thus, rating uncertainty associated with
the criteria is expressed as a frequency distribution. The rules for integrating the
attributes are described by small sets of utility functions, which are presented as
tables or matrices that can be readily defined. The outputs of a utility function are the
marginal frequencies from the joint rating frequency distribution of the two criteria,
calculated according to the particular utility function used. Each utility function has
only two inputs.

A limited palette of five matrices is defined to describe the outcome of aggre-
gating or combining criteria, two at a time. The outcome is described in the same
linguistic terms as the original criteria: very low, low, etc. These five matrices are
minimum, round-down, round-out, round-up,maximumcan be considered to express
a decreasing degree of constraint by the criterion with the lower rating over the other.
The output and application scenarios of the five tables are shown in the Table 3.1.

At one extreme, a minimum matrix defines the outcome as the lower of the
two ratings, so the lower value imposes a complete constraint over the higher. This
expresses the idea of a necessary condition so that both criteria must achieve a partic-
ular rating for the outcome to reach that rating. At the other extreme, a Maximum
matrix defines the outcome as the higher of the two, so the lower rating is not a
constraint on the outcome. This expresses the idea of a sufficient condition, so that if
either criterion achieves a particular rating, then the outcome also reaches that rating,
such as

Minimum(very low, high) = very low,

Maximum(very low, high) = high.
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Table 3.1 Descriptions of the five utility functions

Matrix name Outcome Applicability

Minimum The lower of the two ratings; both are
necessary conditions

The lower rating constrains the
outcome

Round-down The intermediate between the two
ratings but where the intermediate falls
between two categories, the lower

The outcome lies between the two
ratings but tends to be constrained by
the lower

Round-out The intermediate between two ratings
but where the intermediate falls
between two ratings and is lower than
moderate, the higher

The outcome lies between the two
ratings but is more influenced by a
higher or lower rating than a moderate
rating

Round-up The intermediate between the two
ratings but where the intermediate falls
between two categories, the higher

The outcome lies between the two
ratings but tends to be more influenced
by the higher

Maximum The higher of the two ratings; either is
a sufficient condition

A lower rating of one component does
not constrain the outcome

For the other three, the outcome is related to the intermediate of the two ratings
but, being a discrete model, if this falls on the boundary between two categories, the
result is rounded up or down according to the matrix type. For example:

Round - out(very low, high) = low,

Round - out(low, very high) = high.

The five matrices obtained according to the corresponding rules are shown in
Fig. 3.1.

3.3 Cox’s Risk Matrix Design Axioms

The risk matrix provides a potential quantitative relationship with the following
formula: risk = likelihood × consequence. The two axes of the risk matrix are
the likelihood and the consequence, and the risk value is the name of the product.
For example, it can be assumed that the likelihood axis is divided into five ordered
qualitative categories (e.g., from rare to likely) roughly corresponding to dividing
the quantitative probability axis into intervals [0, 0.2), [0.2, 0.4), [04, 0.6), [0.6, 0.8)
and [0.8, 1]. Similarly, the five ordered categories of consequence axes (e.g., from
minor to severe) correspond to numerical intervals [0, 0.2), [0.2, 0.4), [04, 0.6), [0.6,
0.8), and [0.8, 1]. Where 0 is no adverse effect, 1 is the worst possible adverse result,
and a value between 0 and 1 indicates that the value is between no adverse effects
and the worst possible adverse effects.

To make a reliable rating scheme, Cox proposed three axioms to guide users in
rating cells in risk matrices, namely weak consistency axiom, betweenness axiom,
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Fig. 3.1 The five symmetric matrices that express varying degrees of constraint of one criterion
over the other

and consistent coloring axiom. (In Cox’s axioms, the green risk is lowest, red is the
highest, and yellow is in the middle.)

Weak consistency axiom: If a risk matrix contains multiple colors (levels), if it
satisfies weak consistency, the risk value of the points in the high-level cells is greater
than the risk value of the points in the low-level cells. (e.g., if a risk A is quantitatively
higher than another risk B, we have risk (A) > risk (B)). The weak consistency of
Lemma 1 indicates that if the risk matrix satisfies weak consistency, then the red
cell and the green cell are not adjacent. And Lemma 2 describes if the risk matrix
satisfies weak consistency and has at least two levels (green in the lower-left cell, red
in the upper right cell, and the direction of the two axes shows increasing likelihood
and consequence), then green cells do not appear in the right or top row of the risk
matrix, and red cells do not appear in the left or lower rows.

Betweenness axiom: The hypothesis that the riskmatrix provides an approximate
qualitative representation of the underlying quantitative risk alsomeans that any small
increase in likelihood and consequence will not result in a discontinuous jump of the
risk classification from the lowest level to the highest level. If a risk matrix satisfies
the betweenness axiom, then given any line segment with a positive slope that goes
through the red and green cells, the line segment must also go through the yellow
cells.

Consistent Coloring axiom: Ideally, the same quantitative risk should have the
same qualitative risk rating. However, this condition cannot be realized accurately
in a discrete risk matrix. Therefore, we consider the axiom of uniform coloring. If
a risk matrix satisfies consistent coloring, a cell will be red if it contains the same
values of risk as the existing red cells and does not contain the same values of risk
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as the existing green cells. A cell is green when it contains the same risk points as
the existing green cell and does not contain the same risk points as the existing red
cell. A cell is yellow if it is between red and green, or if the cell contains both the
same values of risk as the red cell and the same values of risk as the green cell. This
axiom states that all sufficiently high risks should have the same color (red) and all
sufficiently low risks should have the same color (green).

3.4 Sequential Updating Approach

The design of the risk matrix must conform to certain mathematical logic on the one
hand and must meet the needs of practice on the other hand (Ni et al., 2010; Garvey
et al. 1998; Hewett et al. 2004; Hong 2012; Pickering and Cowley 2010). In general,
two requirements are important to practitioners: (Cox 2008; Levine 2012; Ruan et al.
2015; Organization 2009; Chen et al. 2020).

(a) The designed risk matrix can meet the user’s requirements for resolution;
(b) Designed risks can help decision-makers make the right decisions.

In practice, there are two main purposes for using the risk matrix. One purpose is
to determine the acceptability of a single risk. In this case, it is often only necessary
to have three risk levels to meet the needs of decision-makers, such as “acceptable”,
“reasonable”, and “unacceptable” (Duijm 2015). Another purpose is to rankmultiple
risks (Dethlefs and Chastain 2012). Obviously, in this case, the more the level of the
risk matrix, the more different the risks can be distinguished. From the two purposes
of the risk matrix, the risk matrix designed by Cox is not satisfied. Therefore, for
demand (a), Cox’s method needs to be improved.

According to Cox’s weak consistency axiom, if the two risks are at different risk
levels, then the magnitude of the two risks can be completely differentiated, that is,
the decision-maker canmake the right decision. However, in the risk matrix designed
according to the Cox theorem, the number of risk levels is only three, which makes
the two risks that are highly probable to be evaluated at the same risk level (this
is called the risk knot). At this time, it is difficult to judge which risk is greater. In
addition, the risk matrix designed according to Cox is not unique. As mentioned
earlier, if different matrices are used to judge the magnitude of the two risks, the
results may be different. Therefore, for demand (b), Cox’s approach seems to be
flawed.

Aiming at these two defects, a sequential update approach is proposed to design
the risk matrix. The starting point of this approach is to be able to design a unique
risk matrix that takes into account mathematical logic and practical needs.
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3.4.1 Principles of the SUA to Design Rating Schemes
for Risk Matrices

To prioritize cells in risk matrices, the primary problem is how to compare one cell
with another. Intuitively, if cell A has a higher priority than B, A must be larger than
B. “Larger” here is the result of the logical judgment between two cells. We propose
to provide an appropriate criterion by which any two cells can be compared.

Cox stated in the axiom of weak consistency that “points in its top risk category
represent higher quantitative risks than points in its bottom category.” (1) Put differ-
ently, Cox’s criterion of the logical judgment between two cells is if cell A has a
higher priority than B, then any points in A should be quantitative larger than any
points in B.

Although Cox’s criterion is mathematically reasonable, there are some flaws. (1)
Not any two cells can be compared. For example, in two adjacent cells, due to the
multiplicative measure of risk, there must be some iso-risk contours passing through
both of the cells, which means not all points in a cell are quantitatively larger than
those in the other. As a result, we cannot tell which is larger. (2) An intermediate
(unidentifiable) rating exists. The intermediate rating is denoted by the color yellow
according to Cox. However, the rating “yellow” is not lower than the rating “red” and
is not higher than the rating “green.” Thus, the intermediate rating is not identifiable.
(3) The designed risk matrix is of low resolution because only three colors are used.
These flaws show that the criteria proposed by Cox should be improved to some
extent.

Therefore, in the following, we first describe how to improve the criterion for
comparing the size of two cells. Then, motivated by promising the consistency of
logical judgment and improving the resolution of risk matrices, we provide another
two principles.

Adjusted weak consistency

When we use a risk matrix to assess a risk, we should select a cell in the matrix to
match the risk. However, in a cell of a quantitative risk matrix, there are infinite risk
points, which means we allow risk to “vary within a cell, rather than considering
risk within a single cell to be a single, discrete value.” For a decision maker, he/she
matches the risk with a particular cell because he/she considers the assessed risk is
located at one point in the cell. Thus, from this sense, we may treat a point in a cell
as a possible location of the risk to be assessed, which means the points in a cell may
have a distribution, such as the uniform distribution.

We find that when using Cox’s rule to compare two cells, only the quantitatively
highest and lowest points of the two cells are used. However, since we believe the
risk matched with a cell has a distribution, using only two points to determine the
relationship between the two cells may lose some information. Therefore, a substi-
tution of Cox’s criterion to compare two cells is proposed, namely the criterion of
logical comparison of two cells, defined in the following.
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Definition of Logical Comparison of Two Cells

Cell A is (logically) larger than cell B if and only if the probability that a point in
cell A is larger than a point in cell B is quantitatively larger than a predetermined
threshold.

The criterion can be written mathematically as the following condition:

Pr(a > b|a ∈ A, b ∈ B ) ≥ α, α > 0.5 (3.1)

where a and b are two variables, representing points in cell A and B, respectively,
and α is the threshold established by the decision maker.

According to condition (1), if more risk points in cell A are quantitatively larger
than those in cell B, the corresponding probability will be larger. As a result, it reflects
the difference between the two cells. The higher the corresponding probability, the
larger the difference between the two cells.

Remark: Under the logical comparison of two cells, the possible relationships
between two cells A and B are as follows: A is larger than B, A is equal to B, and
A is smaller than B. At the risk point level, we use “quantitatively larger, equal, or
smaller” to describe the relationship between two points. At the cell level, we use
“larger, equal, or smaller” to describe the relationship between two cells. “Larger”
means the difference between two cells is prominent, namely, the corresponding
probability is larger than α. “Smaller” means the difference is prominent with the
corresponding probability smaller than 1 − α. “Equal” occurs only when α = 0.5.
When the probability is during the interval of (1− α, 0.5) or (0.5, α), we state there
is a difference between the two cells, but the difference is not prominent. Thus, we
cannot state that a cell is larger or smaller than another. In summary, the logical
comparison criterion help us compare any two cells at the cell level considering all
the information the single risk points in the cell bring.

We now explain why condition (1) is adopted. First, intuitively if we want to
obtain the probability that a point in cell A is larger than a point in cell B, we must
first generate two points randomly from A and B, respectively, and then compare
them. After randomly sampling several times, we obtain the frequency of samples
in which a point in cell A is larger than a point in cell B, which can be treated
as an approximation of the corresponding probability. When the frequency remains
unchanged (or the change is small) as the number of sampling increases, we consider
that an acceptable approximation of the corresponding probability for the comparison
of two cells has been obtained. As a result, in this process, distribution of risk values
of a cell is embedded and theoretically every single point in a cell participates in the
comparison process. Therefore, no information in the cell is ignored. Intuitively, if
cell A has a higher rating than cell B, the probability that a point in cell A is larger
than a point in cell B must be larger than 0.5. Thus, α should be set larger than 0.5.

We further describe the motivation for the logical comparison criterion. Intu-
itively, we may treat two cells as two populations and single risk points as individ-
uals. The two cells (populations) are different because the risk points (individuals)
have different characteristics (different distributions). Assume that we now want to
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compare the age of the two populations, A and B. Obviously, if the youngest person
in population A is older than the oldest in population B, we state that population A
is older than B. But, this condition is too strict. We may use the average age of the
two populations. However, if we take the average risk values of the cells to compare
the two cells, each cell will have a particular value and the quantitative risk matrix
will effectively be treated as semi-quantitative, which will still suffer the flaws we
discussed previously. Another concept is if most individuals in population A are
older than individuals in population B, we may conclude that population A is higher
than population B. This idea is normalized by condition (1). This measure will allow
some cells with similar characteristics to be classified into the same rating, and this
classification is not arbitrary (actually, the classification depends on the result of the
corresponding probability).

We next state the reasonability of the logical comparison criterion. Remember
that a risk matrix is a qualitative tool, and decision makers thus classify consequence
and likelihood using qualitative categories such as “very likely.” Thus, between two
adjacent ratings of consequence or likelihood there may be an overlap, i.e., it may be
possible that some points in a cell with a higher rating are quantitatively lower than
some points in a cell with a lower rating (for a visual representation of the overlap,
one may refer to a fuzzy set (Zadeh 1965)). In this case, decision makers are more
prone to believe that they assign a higher rating to cell A of a risk matrix than cell
B because most, but not necessarily all, points in A are quantitatively larger than
those in B. Although this will result in the so-called spurious-resolution, we claim
that since risk matrices are qualitative tools, it is reasonable that some risk values
in a higher-rated cell are quantitatively lower than those in a lower-rated cell if the
proportion of the area with “spurious-resolution” is acceptable.

After explaining the new proposed criterion to compare two cells, we present
the first principle that a risk matrix must satisfy, namely adjusted weak consistency
(AWC).

Definition of Adjusted Weak Consistency

If cell A is assigned a higher rating (or higher priority) than cell B, cell A must be
larger than cell B, according to the logical comparison criterion.

AWC is an intuitive principle. If cell A has a higher rating, it must show some-
thing different than cell B. The comparison of “logically larger” is the difference.
Obviously, it is not reasonable to derive that A is equal to or smaller than B.

The criterion to compare two cells is different from that of Cox, and this is why
“adjusted” is used. AWC can be employed to compare any two cells, irrespective
of whether they are adjacent or not. Another automatic advantage of the principle
of AWC is that the intermediate rating is no longer needed since any two cells are
comparable. In other words, by using adjusted weak consistency, there will be no
unidentifiable ratings.

One finds that if α = 1, condition (1) becomes the condition Cox employed,
namely, all points in A are larger than any in B (in this case, only the quantitatively
highest and lowest points are needed). Thus, mathematically, if α is established with
a higher value, the logical comparison between the two cells will be more accurate.
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However, this does not mean that a higher α is a better choice (see the case where
α = 1 as Cox provided and the analysis in Sect. 4.1.4). For the decision maker, α

represents the least confidence level at which they think A is larger than B. Once α

is given, the criterion to compare any two cells in a risk matrix is determined.
Our final claim is that we do not require the measure of risk to be risk = conse-

quence × likelihood. The method to compare two cells applies to any form of risk
measure, such as risk = consequencen × likelihood, where risk aversion can
be modeled. One may refer to Appendix 1 to obtain the analytical result when the
measure risk = consequence× likelihood is adopted. However, we believe theMonte
Carlo simulationmethod ismore convenient, especially in amore complicated setting
(for example, non-uniformdistributions of consequence and likelihood are used). The
details of the Monte Carlo simulation are presented in Sect. 3.3.

Consistent internality

Adjusted weak consistency requires that if A has a higher priority than B, A must
be larger than B. However, we question that although condition (1) is a necessary
condition of A’s rating being higher than B’s, is it sufficient? Namely, if A is larger
than B, can we conclude that A should have a higher rating than B? For example, in
Fig. 3.2, assume that cell 1 and 3 have the same rating according to condition (1),
cell 6 is larger than cell 1, but cell 6 is not larger than cell 3. In this case, should
cell 6 have a higher priority (yellow or Y) than cell 1 and 3? The question can be
normalized as the following:

Question: If a cell is larger than a portion of the cells that have the same rating,
should it have a higher rating than those cells?

Fig. 3.2 Illustration of
consistent internality
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The answer is no. If the cell has a higher rating, it will violate the AWC principle
because the cell has a higher rating than some of the cells with a lower rating, but
the cell is not larger than them.

This analysis tells us if a cell has a higher rating, it should be larger than any cells
in the lower rating, which forms the principle of consistent internality (CI).

Definition of Consistent Internality

A risk matrix satisfies consistent internality if a cell in a higher rating is larger than
any cells in a lower rating, according to condition (1).

Remark: In a semi-quantitative risk matrix, we classify the cells with different
ratings according to their risk scores. By using AWC and CI, only logical judgment
is needed in the categorization of cells. The difference is: in semi-quantitative risk
matrix, there is no unified standard based on which the thresholds of the scores are
chosen and as a result, a risk matrix with n ratings should have n-1 thresholds; while
by using AWC and CI in a quantitative risk matrix, once the criterion to compare
two cells is determined (namely, α is determined), it works throughout the design
process and there will be no need to determine the thresholds between any two
adjacent ratings.

Continuous screening

The last principle is proposed to address the following problem. Consider the situa-
tion: a riskmatrix has 3 risk ratings, namely, 1, 2 and 3. The rating scheme is designed
according to AWC and CI, and thus cells rated 3 are larger than cells rated 2 and cells
rated 2 are larger than those rated 1. If we compress the risk matrix into 2 ratings,
e.g., A (containing previous ratings 1 and 2) and B (containing previous rating 3),
the latter rating scheme does not violate AWC and CI since cells rated B are larger
than cells rated A. Of course, another rating scheme is feasible: rating A contains
previous rating 1 and B contains 2 and 3. Although these two rating schemes are
correct based on the last two principles, we can further subdivide the ratings because
some cells in a rating are markedly different from the others. This motivates the
following principle of continuous screening (CS).

Definition of Continuous Screening

If cells rated A are determined, any other cell X satisfying the condition that X is
larger than any cells rated A updates the rating of X to a higher level.

We use CS to identify all the ratings whose cells can be distinguished according
to AWC and CI to avoid blocking too many cells in a rating. This is why we call it the
principle of continuous screening. The connection between CS and Cox’s consistent
coloring is, according to Cox, that cells larger than “red” cells are still red, while we
subdivide those red cells. In this sense, CS is a principle maximizing the number of
ratings to make the risk matrix as high-resolution as possible.

Remark: We believe the combination of these three principles is an improved
version of Cox’s rules. AWC and CI constitute the necessary and sufficient condition
for a cell to have a higher priority than another. In some sense, these principles replace
Cox’s weak-consistency and between-ness axioms. The difference between AWC&
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CI and weak consistency axiom on the one hand, and the between-ness axiom on
the other is that the former are reasonable and milder criteria which can be used to
compare the size of any two cells, and thus the intermediate (unidentifiable) rating
is not needed. Obviously, due to the weak consistency and between-ness axioms,
there are only three colors. However, according to AWC and CI, more colors may
be created, and CS is used to maximize the number of colors to provide a higher
resolution.

3.4.2 The Uniqueness Principle of the Sequential Updating
Approach

Uniqueness Theorem: The risk matrix that satisfies weak consistency, consistent
internality, and continuous escalation has a unique design.

In the remainder of this section, positive integers 1, 2, 3, etc. are used to indicate
the magnitude of the risk level, where 1 indicates the lowest risk level.

Proposition 1 If a cell with a risk level m is determined, then if cells with a risk
level greater than or equal to m + 1 exist, then they are also determined.

Proof: Assume that the number of cells rated m is Sm, and the total number of cells
is N. For the remaining N-Sm cells, if they are larger than all the Sm cells rated m
according to AWC and CI, their ratings will temporarily increase by 1 to m + 1 (this
is required by CS). Record the number of cells temporarily rated m + 1 and denote
it by Tm+1.

Of all the cells temporarily rated m + 1, find the smallest by following these
steps: First, choose any cell x ratedm satisfying the condition that the corresponding
probabilities in condition (1) of cells temporarily ratedm+ 1 comparedwith x are not
all 1. Then, select the smallest probability of the probabilities mentioned in last step
(if there is more than one, select any of them) and the corresponding cell temporarily
rated m + 1 is defined as the smallest one we need, which is denoted by x0,m+1.

Next, we compare the remaining Tm+1–1 cells with x0,m+1; if they are larger than
x0,m+1 according to AWC, their ratings temporarily increase by 1 tom+ 2; otherwise,
their ratings remainm + 1. Denote the set containing all cells temporarily ratedm +
1 until now as Lm+1 and the set containing all cells temporarily rated m + 2 as Hm+2.
The members of the two sets remain unchanged if all cells in setHm+2 are larger than
those in Lm+1 according to AWC; otherwise, the cells in set Hm+2 that do not match
the criterion are moved into Lm+1.

Based on the above operations, the cells that ultimately remain in Lm+1 are the
cells rated m + 1 in the final rating scheme. This is because compared with cells
rated m, cells with rating m + 1 satisfy all three principles and no other cells can be
added into the rating m + 1 since the other cells are either smaller than cells rated m
or larger than cells rated m + 1. Additionally, cells whose ratings are larger than m
+ 1 are in the ultimate Hm+2. �
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Proof of the uniqueness theorem

The lower left-most cell that has the lowest categories of consequence and likelihood
should have the lowest rating. The lower left-most cell is the smallest cell among
cells rated 1 and we easily find the cells ultimately rated 1 as we did in the proof
of Proposition 1. According Proposition 1, if the cells rated 1 are determined, cells
rated 2 will be determined. Similarly, we will determine the cells rated 3 given cells
rated 2. Thus, we can now determine the ratings from low to high which are 1, 2, 3,
and so on. The cells in the set Hhighest where the upper right-most cell is and any cell
is not larger than any other one has the highest rating. Ultimately, every cell has a
unique rating, which means the rating scheme is unique. �

From the above process, we see that based on the three principles, the rating
scheme can be designed by assigning ratings 1, 2, 3 and so on to cells in turn.
Therefore, we call our method the sequential updating approach (SUA) to design
the rating scheme of the risk matrix.

3.4.3 A Global Rating Algorithm

The proof process of the uniqueness theorem provides an algorithm for updating
the cell rank for the sequential update method. This algorithm first compares the
cells, then determines a subset of the cells, compares the other cells, determines their
rank, and loops accordingly. This algorithm, referred to herein as the local rating
algorithm, because it requires constant iteration of loops between local cells. This
section will present a more convenient algorithm called the global rating algorithm
for hierarchical design based on the sequential update approach. The global rating
algorithm classifies the characteristics of each cell from a global perspective.

The global rating algorithm consists of three parts:
Part 1: Establishing the relationship between pairs of units;
Part 2: Find the characteristics of any level of cells;
Part 3: Divide the rank according to the corresponding cell characteristics.
Figure 3.3 above shows the schematic flow of the global rating algorithm. Estab-

lish a confidence level in advance. According to the above figure, the probability
comparison matrix is first obtained. Then, based on the PCM, the determined rules
for each unit are given.

Step 1: Establish a probability comparison matrix (PCM). An element in the
PCM indicates the probability that any point in cell i is greater than any point in
cell j. As mentioned earlier, there are two ways to get the probability. One is the
result of mathematical analysis, and the other is the use of computer-assisted Monte
Carlo simulation. Obviously, the mathematical analysis results are more accurate.
However, when there are many cells in the risk matrix, it is not easy to calculate all
the probabilities. It would be more convenient to cycle through all the probabilistic
simulation methods within a computer program. Here are the details of the Monte
Carlo simulation. Considering a riskmatrix, the axes of the consequences are divided
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Fig. 3.3 The graphical explanation of the global rating algorithm

into m intervals on average, and the axes of the probabilities are equally divided into
n intervals. First, mn cells are numbered 1 to mn in order from lower probability
to higher probability, from lower consequence to higher consequence. The specific
process is as follows:

Randomly generate two points located in i and j according to the consequence
probability interval of cells i and j; (2) define the variable counter (initial value is
0), if the risk value of j is greater than i, Counter is incremented by 1, otherwise, it
remains unchanged; (3) steps (1) and (2) are repeated K times to obtain the final size
of the counter; (4) counter/K can be regarded as an approximation of the probability
of any point in cell i is larger than cell j (the number of simulations K should be large
enough so that when K becomes large, counter/K is almost constant). By repeating
the above process, all items of the PCM can be obtained. PCM is a mn ×mn matrix
of one.

In the sub-steps below, as previously mentioned, for the sake of simplicity, the
numbers 1, 2, … are used to indicate the cell level, and the larger numbers indicate
the higher level.
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Find out the characteristics of each cell. In each column of the PCM, the number
of values satisfying PCMi j ≥ α is found, and is represented by “feature number”.
Count the number of features from small to large without repeating, denoted as
a1, a2, · · · , at . Then, use the “count variable” Ni to indicate the number of each ai
repetition (marked as 1 if there is no repetition).

Step 3: According to the characteristics of step 2, find out the rules contained in
the level of the cell. Each unit level contains the following rule: First, the risk level of
all feature numbers a1 is recorded as 1. When the feature number is ap, the rank is R,
if ap+1 < N1+N2+· · ·+Np, then the rank of the cell whose feature number is ap+1

is also R; otherwise, it is R + 1. This is because, when ap+1 < N1 + N2 + · · · + Np,
the cell with the feature number ap+1 is only larger than the portion of the cell with
the rank R, and if the level is raised, the consistent internality principle is violated.

By assigning each cell a level (color) based on the above steps, the risk matrix
design is complete.

Like the LRA, GRA rates each cell in order. The two algorithms give the same
results. The difference between them is as follows: with the use of LRA, the logical
comparison and rating of cells are carried out alternately, and the determination of
the level of each cell can be finally determined after several rounds of iteration. GRA
separates logical comparison from rating. The GRA rates cells based on their global
characteristics, the number of features, and counting variables, so that each cell is
rated one round. The key point of GRA is to summarize the characteristics contained
in the cell level. Although GRA and LRA have nearly the same computational cost
(in theory, each cell pair needs to be compared), theGRAapproachmakes the process
of updating the level of each cell clearer and easier to use.

3.4.4 Application: Design the Rating Scheme of a 4 × 4 Risk
Matrix Using SUA

In this section, we provide a hypothetical case where the decisionmakers must assess
some project risks with the same type of consequence (if the risks are of different
types of consequence, we should normalize the consequences). They do not have
sufficient data of the risks. Thus, they decide to employ a risk matrix to prioritize
these risks. We are entrusted by these decision makers to design a reasonable risk
matrix.

Preparation

To design the rating scheme of the risk matrix according the SUA, we should first
investigate to identify the decision makers’ needs for the risk matrix. So we designed
some questions for the decision makers. We asked the decision makers to give well-
thought-out answers to these questions. The questions and answers are supplied as
follows:
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Question 1. How many categories do you expect the consequence and likelihood
of the risk matrix to have?
Answer.Webelieve it is appropriate if the consequence is divided into 4 categories
and the same for the likelihood, which are “insignificant”, “significant”, “serious”
and “major” for consequence, and “very improbable”, “improbable”, “probable”
and “frequent” for likelihood.
Question 2. Based on your knowledge and experience, what are the intervals
corresponding to the partitions of the consequence and likelihood you would like
to provide?
Answer. For the consequence, we believe the following intervals are reasonable:
[0, 2.5), [2.5, 5), [5, 7.5), and [7.5, 10] (unit: millions of dollars). We divide the
likelihood into [0, 0.25), [0.25, 0.5), [0.5, 0.75), and [0.75, 1]. The larger values
represent a more severe consequence or likelihood.
Question 3. Do you have any knowledge or experience concerning the distribution
of the consequence and likelihood? If not, we assume that the consequence and
likelihood are evenly distributed.
Answer.We currently have no idea concerning the distribution of the consequence
and likelihood.
(For simplicity, we assume the consequence and likelihood are evenly distributed.
However, if there is any additional information concerning the distribution of
consequence and likelihood, it can be embedded into the design process.)
Question 4. In the design process, we must compare two cells, A and B. We
compare A and B as follows: Randomly select one point each from A and B and
compare them. If the probability that a point in A is quantitatively larger than a
point in B is larger than a predefined threshold, we declare A is larger than B. So,
what should be the minimum threshold?
(If necessary, we may need to supply a more detailed explanation of the method
to compare two cells.)
Answer. It seems 90% is an appropriate choice.
Question 5. How many ratings do you expect the risk matrix to have?
Answer. 4 ratings at least.

The above is the minimum information we require. After normalizing the conse-
quence axis from 0 to 1, we present the 4× 4 risk matrix whose rating scheme must
be designed in Fig. 3.4.

Get the probability comparison matrix

Probability comparison matrix (PCM) is the base for the further process. To get
PCM, we need the information obtained from questions 1, 2, and 3, namely, the
numerical intervals corresponding to the categories of consequence and likelihood,
and the distribution of consequence and likelihood.

First, all the 16 cells are numbered “1–16” from lower likelihood to higher
likelihood and lower consequence to higher consequence in turn (see Fig. 3.5).

Then, entries of the PCM can be obtained according to the steps we stated in
Sect. 3.3. Table 3.2 gives thePCM.Weprovide twovalues of PCMi j . The upper value
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Fig. 3.4 A 4 × 4 risk matrix
which needs coloring
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is the simulation result with simulation times K = 10,000 and the lower value is the
analytical result. We find that there is very little difference between the true and esti-
mated results. Therefore, we consider the simulation method is applicable especially
when the distributions of consequence and likelihood are more complicated.

3.4.4.1 Rate the Cells According to the PCM

We have get the value of α from the decision makers, which is 0.9. To rate the cells,
the following steps are necessary:
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Fig. 3.6 Rating scheme of
the 4 × 4 risk matrix
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Table 3.3 Description of all the cells

Description Cell group

1 2 3 4 5 6 7

Corresponding cells 1, 2, 3, 5, 9 4,13 6 7, 8, 10, 14 11 12, 15 16

Characteristic number 0 1 3 8 10 13 15

Counting variable 5 2 1 4 1 2 1

Rating 1 1 1 2 2 3 4

Step a1:Obtain the characteristic numbers of each cell and list the numberswithout
repetition with their corresponding counting variables (Table 3.3).

Step a2: Rate the cells according to the characteristic numbers of each cell. Cells
1, 2, 3, 5 and 9 are rated as “1.” Cells 4, 13 and 6 are still rated “1” because a2 < N1

and a3 < N1 + N2. Cells 7, 8, 10 and 14 are rated “2” because a4 = N1 + N2 + N3

and so on.
We get the rating of cell by the above operations. The rating scheme is presented

in Fig. 3.6.

Sensitivity analysis of rating confidence

When we get the rating scheme of the risk matrix as shown in Fig. 3.6, we should
turn back to see whether the designed risk matrix meets the decision makers’ need.
One may find that once α is determined, the rating scheme of the risk matrix is
unique. Thus, it is possible that the resolution of the risk matrix is lower than what
the decision makers require.Wewill show how the SUA deals with the problem next.

Since a specific α corresponds to a specific design of a risk matrix, a question of
interest concerning the SUA is how rating schemes change asα changes. Intuitively, a
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Fig. 3.7 Relationship between the rating number and α

higherαmeans the decisionmaker requires a stronger difference between two ratings,
and there will thus be fewer ratings. To more intuitively reflect on the relationship
between the number of ratings and α, a sensitivity analysis of α is performed.

As we presented, α ≤ 0.5 is meaningless, and α thus varies from 0.5 to 1.
In particular, a n × n risk matrix with axes of consequence and likelihood evenly
divided can be divided into (n2 + n)/2 at most since it is symmetric around the
lower-left-to-upper-right diagonal. Figure 3.7 shows the rating numbers of the 4× 4
risk matrix mentioned above as α changes.

We notice that when α = 1, there will be only one rating, which further explains
why the transitional rating “yellow” is required according to Cox’s method. This is
because without transitional rating, there cannot be more than one rating. According
to the result of Fig. 3.7, a smaller α corresponds to a higher resolution, but it is at
the cost of the reliability of the ratings because a smaller α means the allowance of
a larger difference between cells with the same rating. As a result, decision makers
should perform trade-offs between higher resolution and higher reliability of ratings.
From another perspective, the sensitivity analysis reported here supplies multiple
choices for decision makers, based on the resolution they expect to have. In practice,
an m × m risk matrix usually has m risk ratings and therefore choosing α to ensure
that an m × m risk matrix is divided into m risk ratings is a reasonable choice.

We designed question 4 and 5 before to obtain the decision makers’ need for
accuracy and resolution of the risk matrix. If the designed risk matrix cannot satisfy
both of the requirement onhigher accuracy andhigher resolution,weneed to feedback
to the decision makers, and give them other possible designs with different α and
resolution.

In Fig. 3.8 we provide another four rating schemes of the same 4 × 4 risk matrix
as α changes. When α becomes larger (representing that the decision maker provides



3.4 Sequential Updating Approach 49

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Consequence

Li
ke

lih
oo

d

1

2

2

2

2

2

3

2

3

4

5

4

5

64

2

α=0.8

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Consequence

Li
ke

lih
oo

d

1

1

1

1

1

1

2

1

2

3

4

3

4

53

1

α=0.83

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Consequence

Li
ke

lih
oo

d

1

1

1

1

1

1

1

1

1

1

2

1

2

31

1

α=0.93
0 0.25 0.5 0.75 1

0

0.25

0.5

0.75

1

Consequence

Li
ke

lih
oo

d

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

α=0.95

Fig. 3.8 Different rating schemes as α changes

stricter criteria based on which cell is larger than another), the number of the risk
ratings becomes smaller. However, when α is set too large, for example, α = 0.95, the
rating scheme designed seems useless since there are only two ratings and only one
cell belongs to the risk rating “2” (red). Therefore, decision makers must determine
what resolution they expect to receive from the risk matrix.

Finally, we argue that the sensitivity analysis performed here is not contrary to
the uniqueness of the rating scheme according to the SUA. α is predefined, reflecting
the decision maker’s acknowledgment of the accuracy of the criteria based on which
two cells are compared. In other words, the choice of α is affected by the decision
maker’s requirement of resolution or accuracy. However, once α is determined, the
rating scheme of a risk matrix is unique.
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3.5 Summary and Comparison of the Rating Scheme
Design Methods

3.5.1 Summary

The accuracy of risk matrix design directly affects the accuracy of risk assessment by
decision-makers using risk matrix, but there is no uniform design standard yet. The
risk matrix design steps include: defining input variables, classifying input variables,
and assigning a risk level to the cells corresponding to each set of input variables.
The third step is the most critical.

For qualitative risk matrices, that is, the categories of consequence and likelihood
are risk matrices described by qualitative language. The design rules are as follows:
cells along the same line have the same risk, and adjacent cells have the same risk
level.

Holt used different utility functions to determine the level of a cell when designing
a qualitative riskmatrix. For example, the consequences and probabilities are divided
into three categories: “high”, “medium”, and “low”. The utility function corre-
sponding to the “minimum matrix” is Minimum (the level of the consequences,
the level of the probability), such as Minimum (very low, high) = very low. A 3 ×
3 risk matrix design result is shown in the Fig. 3.9. The drawback of this approach
is that the dimensions of the consequences and probabilities must be the same, and
the final number of risk levels must equal the number of levels of consequences or
probabilities.

In the research of quantitative risk matrix, Cox first proposed three axioms that a
reasonable risk matrix should satisfy in its review of the risk matrix, namely weak
consistency axiom, betweenness axiom, consistent coloring axiom. These three
theorems illustrate the relationship that should be satisfied between the colors of
different cells.

Fig. 3.9 A 3 × 3 risk matrix

G

G

G

Likelihood

Consequence
Low

Y

Y

G

R

Y

G

Medium High

Low
M

edium
H

igh



3.5 Summary and Comparison of the Rating Scheme Design Methods 51

According to Cox’s three theorems, a 3 × 3 risk matrix has a unique design result
as shown in Fig. 3.10. Although Cox’s theorem is a systematic approach to the design
of risk matrices, there are several deficiencies in this approach. The first is that the
risk matrix designed according to the Cox method can only have 3 colors, namely
red, yellow and green. According to Cox’s assertion, yellow is still an unrecognizable
level, then only two colors are valid. Can be used to distinguish the size of the risk.
Obviously, this feature does not meet the risk matrix itself needs sufficient resolution
(sufficient resolution refers to the number of risk levels is sufficient) to give the risk
rating requirements. The second is that the risk matrix designed according to the Cox
method is not unique. For example, for a 4 × 4 risk matrix, both designs as shown
Fig. 3.11 are possible. The non-uniqueness of this design leads to the inability to
judge in practice which design should be adopted, for the same risk, for example, the

Fig. 3.10 Rating scheme of
a 3 × 3 normal risk matrix
guided by Cox’s three
axioms
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Fig. 3.11 Rating scheme of a 4 × 4 normal risk matrix guided by Cox’s three axioms
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Table 3.4 Description of three different types of risk matrices

Risk matrix type Category 1 Category 2 Category 3 Category 4 Category 5

Qualitative risk matrix Very low Low Medium High Very high

Cox risk matrix [0, 20%] [20%, 40%] [40%, 60%] [60%, 80%] [80%, 100%]

SUA risk matrix [0, 20%] [20%, 40%] [40%, 60%] [60%, 80%] [80%, 100%]

consequences and probability are [0.25, 0.5] risk, in the figure In the two matrices,
one rank is “yellow” and one rank is “green”.

Aiming at the deficiency of the Cox method, a sequential updating approach is
proposed to design a reasonable risk matrix based on the improvement of Cox’s
three theorems. Based on the logical relation between the cells of the risk matrix, the
sequential updating approach proposes the criterion for comparing the size relation
between any two cells and then uses the three principles of weak consistency of
adjustment, consistent internality, and continuous upgrade to regulate the require-
ments of the cell grade in the risk matrix. Then, a global rating algorithm is proposed
to design the risk matrix on the operational level. The risk matrix designed by the
sequential updating approach is unique and high resolution, and the decision-maker
can also choose the resolution according to his own needs. Obviously, these two
features of the sequential updating method are more in line with the requirements of
the risk matrix in practice.

3.5.2 Comparison

Different risk matrix design methods use different interval descriptions, as shown in
the following Table 3.4.

If we qualitatively describe the two inputs to the risk matrix, we can treat each cell
as a point, which can set a score threshold for the qualitative risk matrix to classify
risks. However, if the input uses quantitative description, there are infinite points in
the cell. Therefore, if we compare two cells, cox’s matrix design method only uses
the highest or lowest quantitative points, while the others are not used, which means
that most of the information in one cell will be ignored. Moreover, we believe that
each cell shares a cross-sectionwith other cells (meaning that two cells have the same
quantitative high point), making it difficult to classify two adjacent cells, resulting in
a lower resolution of the scoring scheme. Although SUA uses quantitative interval
to describe the input categories, the probability comparison matrix in the steps of
the global rating algorithm used by SUA covers most of the information of each cell
and also satisfies the mathematical logic. The risk matrix designed by SUA can also
choose the resolution according to the requirements.

The Table 3.5 lists some of the differences between the three design rules. First,
according to our common sense, rating schemes that rely heavily on subjective
judgments often lack scientific analysis and are therefore somewhat unreliable. By
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comparison, we find that the risk matrix of Cox design satisfies strong mathematical
logic, but high reliability will lead to non-uniqueness of the rating scheme; secondly,
more reliable rules are at the expense of low resolution. However, the risk matrix
designed by SUA not only satisfies mathematical logic, but also has high reliability
and resolution, and is unique.
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Chapter 4
Risk Perceptions in Risk Matrix: Sources
and Impact to Risk Matrix Design

4.1 Introduction

In the field of risk management, risk matrices are popular tools due to their intuition
and simplicity to handle subjective judgments. They are widely used in both the
private sector and public organizations, especially when data is insufficient (Chen
et al. 2020; Li et al. 2018). For example, during the recent COVID-19 pandemic, the
risk matrix, which is a typical quick risk assessment tool, is widely used in assessing
risks in major public health emergencies. A risk matrix assesses risk based on two
inputs: typically, these are consequence and likelihood or other, similar factors. The
two inputs are divided into several categories, which are textually described with
words like “high”, “medium”, “low” and so on. The user of a risk matrix needs to
provide estimations of the two inputs based on their experience and knowledge. Each
combination of the two inputs corresponds to a particular cell in the risk matrix. The
risk matrix outputs a risk rating for each cell, usually represented by a particular
color, denoting the severity of a risk (Li et al. 2018; Bao et al. 2018).

The process of using risk matrices reveals that the designers of a risk matrix
should have the same conception of the matrix as the matrix’s users; this conception
includes factors such as (1) the categorization of the two criteria, (2) the measure of
risks in the risk matrix, and (3) the rating mapping to consequence and likelihood (Li
et al. 2018). Otherwise, the decisions made by users based on the risk matrix will be
inaccurate. Some riskmatrix critics consider risk matrices as defective for these tools
rely too much on subjective judgments, and thus the users can not always reach an
agreement on the rating of a risk (Duijm 2015; Ball and Watt 2013). Subjectivity is
the nature of the risk matrix tool, accompanied by its simplicity and intuitive nature
(Li et al. 2018), for it needs the estimates of consequence and likelihood of a risk
as the inputs. When this criticism is proposed, it ignores the feedback between the
design (or designer) and the use (or user) of a risk matrix (Fig. 4.1), namely, the
user must tell the designer his/her perception of the risk, and designer embeds the
user’s perception into the design process to establish a more accurate risk matrix,
which forms the feedback. If the feedback is well handled, the assessment of a risk
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Fig. 4.1 Feedback between the design and use of a risk matrix

based on the corresponding risk matrix will have taken the users’ subjectivity into
consideration, and thus the assessment will be more accurate than that based on the
risk matrix without considering the subjectivity. This raises the questions that how
the perception of risks affects the design of a risk matrix, and how to embed the
perception into the design process, which are novel issues in the risk matrix related
researches.

Risk perception has been proven to exist in the risk management field (Burns
and Slovic 2012; Slovic 1987; Rundmo and Nordfjærn 2017). According to a study
by Fischhoff et al. (1978) that used psychometrics, nine general properties of the
risk source are important: voluntariness of risk, immediacy of effect, knowledge
about the risk by the person exposed to the risk source, knowledge about the risk
in science, control over the risk, newness, chronic/catastrophic, common/dread, and
severity of consequences. These nine properties cause perceptions of risk to vary
in different fields. Thus, researchers have explored many kinds of perceptions, such
as pedestrians’ risk perception of traffic accidents (Rankavat and Tiwari 2016), the
perception of risk in the fishing industry (Booth and Nelson 2014), and so on (Taylor
and Snyder 2017; Zhao et al. 2016). Researchers underscore that risk perception
should be added as a variable to occupational safety research models, such as the
Health Belief Model (Rosenstock 1974).

Risk perception, in short, can be explained as how a stakeholder feels about a risk
(Taylor and Snyder 2017; Rundmo and Nordfjærn 2017). This is a highly relevant
concept in the risk matrix where risk is finally assessed as a particular level, and
risk matrices are concrete tools that measure the perception of risks. Goerlandt and
Reniers highlighted that in different approaches to risk analysis, risk perceptions are
used in the risk ranking process. Obviously, risk ranking is themain goal of using risk
matrices, and therefore risk perceptionsmust be highlighted in risk communication of
riskmatrices. As discussed before, in different fields, factors affecting risk perception
are various. We care what should be the factors affecting the risk perception in risk
matrices, namely, the risk rating of risk (Goerlandt and Reniers 2017). Obviously, as
Ale et al. stated, “you cannot derive legitimate quantitative (QUANT) outputs from
PCDS (probability consequence diagrams) when they are an essentially qualitative
(QUAL) presentation” (Ale et al. 2015). Thus, the uncertainty, which is the reason
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for the qualitative presentation, about the quantitative settings in risk matrices makes
the perception of risk different. These quantitative settings could be (Ale et al. 2015):

• What are the correct ordinates?—Probabilities, frequencies of events, outcomes,
etc.?

• One or both linear scales, or logs, powers?
• Discrete points or area averages?
• Single points or distributions?
• Completeness?
• Uncertainties?
• “Level of Risk” (total, components).
• Criteria, acceptability, tolerance, appetite.
• Calibration with records, reality?

We contend that the perception of risk could be decomposed into the percep-
tions of different aspects, each of which may affect the final perception of risk.
To construct the decomposed perception structure, it is started from the defini-
tion of risk in the risk matrix. Generally, the output of the risk matrix, namely,
the rating of risk could be treated as the function of consequence and likelihood, e.g.,
risk rating = f (consequence, likelihood) (Pickering and Cowley 2010). This
function reveals that two main dimensions are important: (1) the inputs, and (2) the
concrete function form. For the input dimension, users are not required to give precise
estimations of the two inputs. The estimations are allowed to vary within an interval,
which results in so-called input data biases (Smith et al. 2009). It is possible that
for a particular category of likelihood, different users may give different quantitative
intervals. Besides, researchers found that sometimes it is confused for risk matrix
users to determine which category the consequence or likelihood of the assessed
risk should belong to (Ball and Watt 2013). And for the function form dimension,
though, in a risk matrix, the risk is usually measured by the product of consequence
and likelihood, other forms are possible, such as the logarithmic form and so on
(Levine 2012; Chen et al. 2020). Moreover, in risk management (only adverse events
are considered here), decision-makers are possibly risk-averse besides risk-neutral
(Bedford 2013; Thomas et al. 2014). One may refer to Li et al. (2018; Cox 2008; Iec
2009) for examples of risk matrices designed with and without risk aversion. Obvi-
ously, different people have different perceptions of these settings, and the variety
of perceptions makes it difficult to design a satisfying risk matrix to assess risks.

Although risk matrix design is usually based on subjective judgment, Li et al.
(2018) warn that “we should avoid believing that because we are using qualitative
risk management tools, the risk matrices should be designed in an entirely subjective
way.”Several sets of rules havebeenproposed for designing riskmatrices.Cox (2008)
provided three axioms that a reasonable risk matrix should satisfy. Li et al. extended
Cox’s rules and proposed the sequential updating approach (SUA) to design unique
risk matrices. In practice, the SUA seems more robust and effective in practice, and
thus is adopted here.
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4.2 Identifying Risk Perception in Risk Matrices

In this section, we explore the types of risk perception affecting the design of risk
matrices instead of finding the factors that affect the perception of risk. We conclude
based on the literature that perception is always object-oriented (Zhao et al. 2016;
Booth and Nelson 2014). To clarify where risk perceptions derive in risk matrices,
we must first have a thorough understanding of the design process.

As Li et al. stated, three steps are necessary for designing a risk matrix, namely,
(s1) categorizing the inputs, (s2) defining the risk measure, and (s3) assigning each
cell a particular risk rating. The first two steps are the preliminaries of the third step,
and the third step is the core part of the design (Li et al. 2018). The types of perception
identified in this section are based on the first two steps.

A risk matrix has a special structure as shown in Fig. 4.2. When assessing risk,
users need to estimate and assign particular categories to the inputs, after which the
riskmatrix outputs a risk rating. The process of outputting a risk rating is complicated.
The designers should first obtain the users’ definition of the inputs and the measure
of risks. Then the designers must use an effective set of rules to map the cells onto
risk ratings. Throughout the process of designing riskmatrices, most judgments (e.g.,
determining the categories of inputs) rely on the users’ feelings or attitudes towards
the perceived risk. As researchers have pointed out, uncertainty is a major factor
affecting the perception of risks (Booth and Nelson 2014; Goerlandt and Reniers
2016). In this subsection, we identify various types of risk perception in risk matrices
and show how they are affected by different kinds of uncertainty.

Fig. 4.2 A typical 3 × 3 risk
matrix
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Risk = F(C,P)

Issues related to inputs C and P Issues related to function F

Scaling of inputs Location of inputs Membership of input 
category Measure of risks Attitudes towards risks

Overall risk perception

Decomposed risk 
perceptions

Fig. 4.3 Decomposition of risk perceptions in risk matrices

Figure 4.3 displays the five kinds of risk perceptions in risk matrices. Specifically,
we start from the general measure of risks, which usually has the form like risk =
f (consequence, likelihood) (Aven 2012). In quantitative risk assessment, the risk
ismeasured as a particular value, and the overall risk perception towards the perceived
risk is based on this concrete value. While in risk matrices, even though the assessed
risk corresponds to a cell instead of a single point, a risk matrix is a graphical
representation of such risk measure (Ale et al. 2015). One may find that the elements
contained in the riskmeasure correspond to the three steps for designing a riskmatrix:
inputs C and P correspond to step (s1), function F corresponds to step (s2), and the
overall risk corresponds to step (s3). Obviously, the overall risk is determined by
both the inputs and the risk measure. Therefore, we the overall risk perception into
two parts which are related to the inputs and the risk measure. Then, these two parts
are decomposed into more smaller parts as shown in Fig. 4.3. In the following, we
will explain why these decomposed risk perceptions are proposed in detail.

4.2.1 Perception of the Scaling of Inputs

The first step of designing risk matrices is to define the intervals of inputs. The
designers should ask the users to give well-thought-out definitions of the categories
of consequence and likelihood. For example, if the consequence of a risk matrix
needs to be divided into four categories—in this case, negligible, marginal, critical,
and catastrophic—the designers and users should give quantitative descriptions of
these four categories.

In risk matrices, the categories of inputs are textually described using adjectives.
However, people may link the same adjective to different quantitative intervals. For
example, in the field of drilling hazard management, Pritchard et al. thought the cate-
gory “catastrophic” corresponded to the interval of [$20M,+∞). While the U.S. Air
Force described “catastrophic” as [$1M,+∞). Even in the same category of the same
risk matrix, individuals have different conceptions of risk. Payne asked respondents
to provide estimates of the same consequence, and the scores varied among respon-
dents (Payne 2014). This is because individuals have different knowledge regarding
the risk, and uncertainty makes a uniform scaling of the inputs difficult. We call this
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kind of perception towards the scaling setting of the risk matrix “perception of the
scaling of inputs”.

Form of the perception of the scaling of inputs. For the consequence or like-
lihood of the risk matrix, the intervals of the categories can be normalized as
[c1, c2), [c2, c3), . . . , [cn, 1] or [l1, l2), [l2, l3), . . . , [ln, 1]. If decision-makers
have differing perceptions of the scaling of the inputs, they may assign different
values to the intervals, which will affect the design of the risk matrix.

In literature, consequence and likelihood axes are usually assumed to be evenly
divided (Li et al. 2018). For example, in (a) of Fig. 4.4, evenly divided axes for
the 4 × 4 risk matrix mean that the categories of consequence and likelihood are
both partitioned with the quantitative intervals [0, 0.25), [0.25, 0.5), [0.5, 0.75),
and [0.75, 1], where each category has the same length of 0.25. We provide two
other types of possible settings for the input scaling (here we want to show two
regular examples where the inputs are not evenly divided; in fact, any example can
be presented and thus, whether the two examples are usually used in practice is
trivial). One is the arithmetic progression form, which means that the length of the
category increases with a fixed step. The setting of the arithmetic progression form
is shown in (b) of Fig. 4.4 with the intervals [0, 0.1), [0.1, 0.3), [0.3, 0.6), and
[0.6, 1], with fixed-step 0.1. The other possible kind of setting is the geometric
progression form, where the length of the category increases geometrically with a
fixed ratio. In Fig. 4.4, (c) presents a particular geometric progression form with
intervals [0, 1/15), [1/15, 3/15), [3/15, 7/15), and [7/15, 1], with the ratio of
2. Obviously, given different perceptions towards the settings of input scaling, the
structure of the riskmatrixwill change. From (a) to (c) in Fig. 4.4, the cells showmore
difference in area, and the cells with a low rating of inputs becomemore compressed.
It is possible that the design of the risk matrix will change accordingly. Notice that,
in Fig. 4.4, we show the same design under three different forms of input scaling.
The accuracy of the designs in Fig. 4.4 will be discussed in Sect. 4.4.
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Fig. 4.4 Three different settings of scaling of inputs
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4.2.2 Perception of the Location of Inputs

In 1951, Payne found that “Given a list of numbers [respondents] are prone to choose
those near themiddle of the list” (Pickering andCowley2010; Payne2014). Similarly,
in risk matrices, for a particular interval of a category of inputs, users may think the
consequence or likelihood of the assessed risk will not be equiprobably located at
any point of the interval based on their knowledge about the risk. In other words, the
inputs may not be evenly distributed in an interval. For example, if the “medium”
category of the consequence corresponds to the interval of (0.4, 0.6], when using this
risk matrix to assess risk, the user assigns the category “medium” to the consequence
of the risk because he thinks the consequence is near 0.5 and 0.5 is in the interval
of (0.4, 0.6]. In other words, for this risk assessor’s perception, the consequence is
not evenly distributed on the axis. We term this kind of perception in risk matrices
“perception of the location of inputs”.

In addition, the consequence may correlate to the likelihood. Smith et al. found
that, given a collection of data of the estimation of consequence and likelihood,
datum points tend to be located on the diagonal that is upward and rightward from
the origin (Smith et al. 2009). Hong used a copula to obtain the joint distribution of
consequence and likelihood (Cook 2008). This is another kind of perception of the
location of inputs that considers their correlation.

Form of the perception of the location of inputs. Users may distribute the
input in a particular category according to their knowledge. Generally, we denote the
distribution of consequence by f (C, L) and that of likelihood by g(L ,C), where
their correlation is considered. For example, if users think the input is most probably
located at the central part of the category, and the probability of its being located at the
edge of the category gradually dwindles, a normal distribution may be reasonable. If
the users think the input is equiprobably located at any point in an interval, a uniform
distribution is suitable.

Of course, the perception of the location of inputs is also derived from the uncer-
tainty regarding the cognition of the assessed risks. To visually present the uncer-
tainty, we first consider one input at a time.We assume that, in each category of conse-
quence, the consequence is normally distributed, namely, N (0.5, 0.01) as shown in
Fig. 4.5. This assumption is reasonable; for example, in practice, decision-makers
tend to consider the consequence to be located in the center of the category with high
probability as has been found by Payne.

Fig. 4.5 Normal distribution
of inputs with 2 categories

Consequence
0 0.5 1
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If both the consequence and likelihood are normally distributed in each category,
the points in a cell are distributed as Fig. 4.6.

Finally,we assume that the consequence is positively correlated to likelihood.Both
of the inputs are normally distributed in each category of inputs. The distribution of
the risk points in the risk matrix is shown in Fig. 4.7. In each cell, we assume that
the binary variable (consequence, likelihood) obeys the normal, two-dimensional
distributionwith a variance of 0.01 and a correlation coefficient of 0.8. In this case, the
points are distributed around the diagonal in each cell. Therefore, if the correlation
between the two inputs is embedded, the information on the points in each cell
changes.

Fig. 4.6 Risk points in a cell
with two normally
distributed inputs
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4.2.3 Perception of Input Category Membership

In a risk matrix, it is common that decision-makers cannot assign each input of an
event a correct category. This is because fuzzy information prevents the determination
of the membership of the inputs to particular categories (Levine 2012). For example,
Zhao et al. assessed the stakeholders’ perceptions of risk in construction by asking
the participants to judge the categories of consequence and likelihood of the same
event (Zhao et al. 2016); the participants chose different categories. Ball and Watt
found that, given different times to assess three kinds of risks, the same participants
chose different categories for the inputs in risk matrices (Ball and Watt 2013). These
studies reveal that the ability to determine the input category of an assessed risk is
affected by many factors, such as the information possessed by the respondents, the
mental processing related to the response time, the respondents’ beliefs, and so on.
All the uncertainty about these factors is the source of the fuzzy information. Fuzzy
information leads to hesitation at deciding which category an input should belong
to. Therefore, the perception of the proper categorization of the assessed risk may
vary. We term this kind of perception “perception of input category membership”.

For example, let us suppose that, in a risk matrix, two categories of consequence,
“medium” and “high”, are assigned the intervals (0.3, 0.6] and (0.6, 1]. The user
of the risk matrix thinks the consequence of the assessed risk is around 0.6. In
this case, he cannot determine the category to which the consequence belongs. The
membership function which is usually used in fuzzy systems is adopted to describe
the uncertainty of determining the membership of the input’s category. This tool is
introduced below.

Form of the perception of input category membership. The perception of
input category membership can be expressed by the membership function, which is
adapted to represent different grades ofmembership (Bao et al. 2018; Zadeh 1965). In
applications, membership functions are usually assumed to be trapezoidal as shown
in Fig. 4.8. When x is in the interval of [a2, a3] and [a4, a5], it 100% belongs to
set 1 and set 2. When x is in the interval of [a1, a2], the grade of x belonging to
set 1 increases from 0 to 1. In a risk matrix, there may be an overlapping part

Fig. 4.8 An example of a
trapezoidal membership
function
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Fig. 4.9 Visualization of the
fuzzy part of the inputs’
adjacent categories
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between the intervals of two categories, which is treated as a fuzzy part ([a3, a4]
in Fig. 4.8). For example, let us suppose that the designers of a risk matrix think
that the category “low” corresponds to the interval of [0.3, 0.6] and the category
“medium” corresponds to the interval of [0.5, 0.8]. This means [0.5, 0.6] is the
overlapping of the two categories. The overlapping part exists because risk matrices
are essentially qualitative tools and the boundary of two categories of the inputs is
difficult to distinguish (Bao et al. 2018).

Figure 4.9 visualizes the fuzzy part of the intervals of the inputs’ adjacent cate-
gories. If in each category, the assessed inputs of the risk belong to the category with
the degree of 1, the boundaries of each cell are the original ones, which are the solid
lines. When the degree of membership is not 1, the boundaries expand. The dashed
lines outside a category are the new boundaries of each cell; this means risks that
have the same consequence or likelihoodmay be assigned to different risk categories.

4.2.4 Perception of the Measure of Risks

In quantitative risk matrices, the measure of risks is very important in the mapping
of risk ratings to each cell. The difficulty of understanding the measure of risks in
quantitative risk matrices is that the inputs are described by intervals and, thus, the
cell cannot be denoted by a particular score. In a cell, there are infinite risk points.
The risk measure works in giving the risk points different scores. Mapping a risk
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rating to a cell is based on the information that these infinite risk points provide (Bao
et al. 2018). This is why risk measure is important in risk matrices.

Although the multiplication measure of risk, risk = consequence ×
likelihood, is the most common one in the risk matrix, other forms of measure
do exist. Li et al. (2018) found that, in some risk matrices, the risk is measured by
the addition formula. Ni et al. (2010) provided different kinds of risk measures in
risk matrices. We term this kind of perception “perception of the measure of risks”.

Form of the perception of the measure of risks. The score of a risk point is
the output of the function of consequence and likelihood, namely, Risk = F(c, l).
In risk matrices, the assessed risk corresponds to the cell instead of to a single
point. The risk rating of a cell should be determined by calculating Rating =
G([c1, c2], [l1, l2], F (c, l)). Obviously, the risk measure plays an important role
in the risk matrix design.

To visually present how the perception of the risk measures affects the design
of risk matrices, in Fig. 4.10, we draw some iso-risk contours based on the risk
measures. The solid lines are drawn according to the multiplication measure: risk =
consequence × likelihood. The dashed lines are drawn according to the additional
measure of risk = consequence + likelihood. Obviously, in this risk matrix, the
additional measure seems not to be matched with the design. Generally speaking,
the distribution of the risk ratings of the cells should be in accordance with the risk
measure, specifically, the iso-risk contour. In Fig. 4.11, we provide a risk matrix
used by Cook (2008) in the study of safety management. We see from the risk matrix
that the rating distribution of the cells is well-matched with the iso-risk contours,
which are of the addition form. This analysis reveals that risk measures may affect
the design of risk matrices by changing the rating distribution of the cells.

Fig. 4.10 Explanation of
how risk measures affect the
design of risk matrices
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Fig. 4.11 A risk matrix with additional forms of risk measure

Although risk measures affect the designs of risk matrices, we see that the rating
distribution of cells is not completely in accordance with the risk measure. In
Fig. 4.11, the multiplication form of the risk measure seems to match the rating
distribution of the cell. However, there must be an iso-risk contour passing through
both yellow and red regions, which means according to the iso-contour, we can not
find a region where all the cells with the same rating stay. Thus, the points with the
same quantitative risk values may belong to different risk ratings. All this is because,
in a risk matrix, the cells are square, and usually, the iso-risk contours are smooth,
and thus, the iso-risk contours must pass through the cells. This phenomenon makes
it more difficult for risk matrix users to have an accurate conception of the risk
measures.

4.2.5 Perception of Attitudes Towards Risks

Risk attitudes are a common topic in risk management. Researchers have found
that, when using risk matrices, decision-makers are not always risk-neutral. They
show risk aversion in some cases (Goerlandt and Reniers 2016; Bedford 2013).
Risk aversion in risk matrices is understood as the perception that consequence
plays an important part in risk scoring. For example, let us suppose that we are
assessing two risks; the consequence and likelihood of one risk are “medium” and
“low”, respectively, and the consequence and likelihood of the other are “low” and
“medium”, respectively. If the decision-maker is risk-neutral, the rating of the two
risks is the same (e.g., “green”). But, if the decision-maker is risk-averse, the rating
of the risk with “medium” consequence and “low” likelihood may be “yellow” while
the rating of the other risk is “green” (“yellow” is a more severe rating than “green”)
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Fig. 4.12 A risk matrix
given by ISO (2009) with
risk aversion
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because the consequence of the former risk is larger and, thus, the score of the risk
is increased. In addition, even people who are aware that they are risk-averse display
varying degrees of aversion. We term this kind of perception “perception of attitudes
towards risks”.

In the theoretical study of risk matrices, decision-makers are usually assumed to
be risk-neutral. Figure 4.10 shows a typical risk matrix with a neutral attitude toward
risk. This kind of risk matrix is diagonally symmetrical from (0,0) to (1,1). This
is because a risk-neutral attitude means that the two inputs are given equal weight.
In practice, people tend to display risk aversion. For example, Fig. 4.12 supplies a
risk matrix created by ISO (International Standardization Organization). Obviously,
in this risk matrix, consequence plays a more important role than likelihood; this
proves the existence of risk aversion. However, ISO did not tell what the creator’s
degree of aversion is and how risk aversion is embedded in the design of the risk
matrix. To describe the degree of risk aversion, the following form of this perception
is provided.

Form of the perception of attitudes towards risks. The measure risk =
consequence × likelihood is the most commonly used of all the possible forms,
and thus, is adopted here to show to resent the risk attitude (Other forms of risk
measure can be given here, and the analysis process is similar). One problem with
this measure is that it cannot reflect decision makers’ risk attitudes. In practice, many
decision-makers are risk-averse (“risk” here means “adverse event”) and, thus, a risk
measure considering risk aversion is adopted by some risk matrix practitioners as
shown in Eq. (4.1).

risk = likelihood × consequencen (4.1)



70 4 Risk Perceptions in Risk Matrix: Sources and Impact …

Consequence

Li
ke

lih
oo

d

0 0.25 0.5 0.75 1

0.
25

0.
5

0.
75

1

Consequence

Li
ke

lih
oo

d

0 0.25 0.5 0.75 1

0.
25

0.
5

0.
75

1

(a) n=1 (b) n=1.5

Fig. 4.13 Two risk matrices with the aversion coefficients set with 1 and 1.5

where n ≥ 1 is a risk aversion coefficient. This means that even if consequence and
likelihood are the same, consequence plays a more important role when risk attitude
is risk-averse (n ≥ 1).When n ≥ 1, it is easy to prove that the risk attitude in Eq. (4.2)
is risk-averse by using the Arrow–Pratt measure of absolute risk aversion:

A(risk) = −risk ′′(consequence)
risk ′(consequence)

= −n − 1

l
< 0 (4.2)

Similar to the analysis of the risk measures, the perception of attitudes towards
risks will affect the iso-risk contours and the distribution of the ratings of the cells.
For example, in Fig. 4.13, we show two risk matrices where the aversion coefficients
are set with 1 and 1.5, respectively; obviously, given different aversion coefficients,
the iso-risk contours are different, and the distribution of the risk ratings may change.
Detailed discussion will be given in Sect. 4.4.

4.3 A Sequential Updating Approach Used to Integrate
Different Perception

The mapping of the cells to different risk ratings is the most important part of the
design process because, if the mapping is not accurate, the assessment of the risks
will not be reliable. Therefore, the design should not be arbitrary. As we stated
above, the key to solving the mapping problem is to provide a function, namely
Rating = G([c1, c2], [l1, l2], F (c, l)). This function is related to the definition
of inputs and the risk measure.

Cox (2008) first discussed the mapping problem and found that the potential
rules for guiding mapping in practice were not theoretically accurate. To solve this
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problem, Cox proposed three axioms that a reasonable risk matrix should satisfy. To
our best knowledge, Cox is the first one who proposed a systematic method to give a
reasonable design of a risk matrix. However, it seems Cox’s axioms are too strict that
the design risk matrix can still be improved. For example, according to Cox, only
two risk ratings are effective, which leads to low resolution; besides, the designs of
the same risk matrix are not unique. These two flaws may prevent the widespread
use of the axioms in practice. Besides, we find that in some cases, Cox’s axioms fail
to output a risk matrix design (see the discussion in Sects. 4.1 and 4.5).

Li et al. (2018) extended Cox’s method and recommended the use of the SUA,
which allows decision-makers to choose the number of risk ratings they need and
then output a unique design from the risk matrix. To the best of our knowledge,
Cox’s axioms and the SUA are the only two methods that have been proposed in a
formative way in the literature. Compared with Cox’s axioms, the SUA is a more
robust method, and thus, it has been adopted here. In the rest of this section, we
first briefly introduce the SUA, and then tell how to integrate different types of risk
perception in the risk matrices.

4.3.1 Review of the SUA

Given the description of the inputs and the number of risk ratings, the key step is to
assign the ratings to each cell. The SUA provides a systematic theory with which to
undertake this process:

(a) The SUA assigns risk ratings to different cells, from low to high sequentially,
mainly because it proposes a rule to compare any two cells. This rule is called
the logical comparison of two cells, and it can be stated as follows: Cell A
is (logically) larger than cell B if, and only if, the probability that a point in
cell A is quantitatively larger than a point in cell B exceeds a predetermined
threshold.

Mathematically, the criterion can be written thusly:

Pr(a > b|a ∈ A, b ∈ B ) ≥ α, α > 0.5 (4.3)

where a and b represent two possible points in cells A and B, respectively, and α is
the predetermined threshold.

(b) Based on the cell comparison rule, three principles are proposed. They are
explained as follows.

Adjustedweak consistency (AWC). AWC states that, if cell A has a higher rating
than cell B, A must logically be larger than B.

Consistent internality (CI). CI holds that a higher-rated cell should be larger
than all cells of a lower rating. It states that “A must logically be larger than B” is a
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necessary condition (instead of a sufficient condition) of “cell A has a higher rating
than cell B”. If, and only if, cell A is larger than all the cells that have the same risk
rating as B will cell A have a higher rating than B.

Continuous screening (CS). CS states that “If cells rated A are determined, any
other cell X satisfying the condition that X is larger than any cells rated A updates
the rating of X to a higher level”. If CS is not satisfied, the rating of a cell which
should otherwise have a higher rating will remain unchanged. Thus, CS is intended
to maximize the number of risk ratings.

(c) After the above three principles are provided, a global rating algorithm is
proposed to complete the design that satisfies the three principles. Given am×n
risk matrix, the cells of which are numbered as 1 − mn from lower likelihood
to higher likelihood and from lower consequence to higher consequence, the
risk matrix can be designed according to the following steps.

c1. Obtain the probability comparison matrix (PCM). The element PCMi j in the
PCM represents the probability that a point in cell i is larger than a point in cell j,
namely, Pr(a > b

∣
∣a ∈ celli , b ∈ cell j ). The PCM can be obtained analytically or

by the simulation method.
c2. Give two characteristic variables of the risk matrix. In each column of the

PCM, record the number of values satisfying PCMi j ≥ α. This number is the
first variable, which is called the characteristic number. Then rank these charac-
teristic numbers without repetition in ascending order as a1, a2, . . . , at . The other
variable, the counting variable Ni , is used to record the number of repetitions of each
characteristic number ai .

c3. Discover the priorities of the cells based on the two characteristic variables.
The rule is that the lowest risk rating is assigned to the cells whose characteristic
number is a1; For cells rated X with the characteristic number ap, if ap+1 < N1 +
N2 + · · · + Np, the rating of the cells with the characteristic number ap+1 remains
unchanged; otherwise, the ratings of these cells will be upgraded to the next level.
This is because, when ap+1 < N1 + N2 + · · · + Np, the cells with the characteristic
number ap+1 are logically larger than only a portion of cells with ratings the same
as or lower than X ; this violates CI.

Figure 4.14 presents a simplified version of the process of theSUA.After the above
steps, all of the cells will have a unique risk rating. The cell with the lowest conse-
quence and likelihood has the lowest risk rating, and the risk ratings of other cells
will be determined sequentially according to the principles stated above. Figure 4.15
shows a risk matrix created according to the SUA.

4.3.2 Integrating Different Types of Risk Perception

An important characteristic of the SUA is that it does not impose any special
assumption on the description of the elements of risk matrices. Therefore, it can
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Fig. 4.15 The design of a
4 × 4 risk matrix with
α = 0.9, according to the
SUA
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still output the design of a risk matrix when different perceptions on these elements
are integrated.

For possible scaling of the consequence and likelihood,
[c1, c2), [c2, c3), . . . , [cn, 1] and [l1, l2), [l2, l3), . . . , [ln, 1], one just needs to
replace the original intervals with the new ones. Then in the process to obtain the
PCM, the boundaries of a cell are determined by the supplied intervals.

For the perception of the location of inputs, given a particular distribution of two
inputs, the changes of the design process are also reflected in the way to obtain PCM.
For example,when using the simulationmethod to calculate the PCM, if consequence
and likelihood are evenly distributed on the axes, then risk points will be generated
with the same probability; but if the new distribution is replaced, the probability
differs.

To integrate different perceptions on the input category membership, one should
first give the membership function. Then each risk point in the cell should multiply
a weight corresponding to the membership value. For example, in the simulation
method, if the membership of a risk of 0.5 to the category of “yellow” is 0.9, then
the final value of the risk is 0.45. Other steps remain unchanged during the design.

Integrating different perceptions of risk measures is easy to understand. For
example, given consequence of 0.5 and likelihood of 0.5, if the risk measure is
considered as the addition form, the risk value is 1; while in the multiplication form,
the risk value is 0.25. Under different risk measures, the values of the risk points will
be different.

Integrating different perceptions of risk attitudes is similar to integrating the
perception of risk measures. Since here risk attitude is represented by adding an
aversion coefficient to the risk measure, the change of risk attitude will also affect
the risk value, and further affect the comparison of two risk points.

Remark: The SUA extends Cox’s method mainly because it allows any two
cells comparable, which is the criterion to assign the two cells different risk ratings.
Integrating different types of risk perception to the design of risk matrices is to give
different settings,which are preferredby theusers, to the elements of the riskmatrices.
The reason why the SUA can be used to study the influence of risk perceptions on
the risk matrix design is the design created according to the SUA will always exist.
This is formed as the property of the SUA as stated in the following.

Property of the SUA: The design according to the SUA will always exist.
Proof . The design of a risk matrix exists if there are at least two risk ratings (if

there is only one risk rating, the risk matrix can not be used to prioritize risks). For
a risk matrix, the upper right-most cell is larger than the adjacent two cells since
one of the two inputs is the same and the other must be larger. If we set an α that
will differentiate the cells into two risk ratings, the upper right-most cell will have a
higher rating than all of the other cells. Therefore, there are at least two risk ratings,
meaning that the design of a risk matrix will always exist.
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4.4 Risk Matrices Integrating Different Risk Perceptions

Before involving different types of perception, the normal risk matrices are present.
This kind of risk matrices is used by many researchers, and no particular perceptions
are considered in its use (Li et al. 2018; Cox 2008). Its characteristics are as follows:
the axes of the two inputs are evenly divided into several categories, the two inputs
are evenly distributed, there is no fuzziness between different categories, the risks
are measured by risk = consequence× likelihood, and the attitude towards risks
is neutral. According to the SUA, a normal 4×4 risk matrix is the same as the one in
Fig. 4.15. When we study the effect of one perception on the design of risk matrices,
we assume that other perceptions are normal. In the analysis, the cells are numbered
as 1 − mn from lower likelihood to higher likelihood and from lower consequence
to higher consequence.

When analyzing the performance of the risk matrix designs integrating risk
perceptions, we must answer the following two questions:

Q1. Should the design under the normal setting change as risk perceptions are
added?

Q2. If the answer to question 1 is yes, how does the design change?
Obviously, if the answer to Q1 is yes and the design does not change according to

a method, the method fails to integrate the risk perceptions. Below, we give a more
detailed analysis on integrating the perceptions.

4.4.1 Performance of Integrating Risk Perception
on the Scaling of Inputs

To visualize the influence of this perception, here we illustrate a 4 × 4 risk matrix
the quantitative category lengths of which consist of an increasing geometric
sequence. Specifically, the intervals of consequence and likelihood are [0, x),
[x, cx + x),

[

cx + x, c2x + cx + x
)

, and
[

c2x + cx + x, 1
]

where c > 1(the
lengths of these intervals are x , cx , c2x , and c3x where x + cx + c2x + c3x = 1).
Notice that, here, c is a parameter thatwe set to present different degrees of perception
on the scaling of inputs, and if c = 0, the risk matrix becomes normal.

In Fig. 4.16, we present two different settings of the scaling of consequence and
likelihood. The first is of the parameters with x = 8/65, c = 1.5, and the second
is of the parameters with x = 1/15, c = 2. The designs of the two risk matrices—
namely, the color setting of each cell—are based on Cox’s three axioms, and the two
designs are the same (in fact, nomatter how c changes, the design remains unchanged;
see the proof in Appendix). Obviously, with different settings of the parameters, the
structure of the risk matrix changes. The cells in the risk matrix with larger c(c = 2)
are of larger differences in area than those in the risk matrix with smaller c(c = 1.5).
The question is this: should the risk matrices with different scaling of inputs have
the same design?
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Fig. 4.16 Two different settings of the scaling of inputs

To answer this question, we first explore how the ratios of the three ratings in
the risk matrix change as c vary. (Here, the ratio is measured between the area of
the region of a rating and the total area of the risk matrix.) Fig. 4.17 presents their
variation trend.

Apparently, when c gets larger, the red region occupies most of the risk matrix. In
these cases, there are three red cells in the risk matrix, namely, “12”, “15”, and “16”.
Cell “16” is significantly larger than cells “12” and “15”. (The areas of cells “16” and

Fig. 4.17 Ratios of the three ratings as c changes
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Fig. 4.18 Rating schemes of two 4×4 risk matrices the inputs of which are increasingly described
with c = 1.5 and 2 according to the SUA

“12” are c6x and c5x , respectively, and area difference is quite large when c is very
large.) As a result, we think cell “16” should be differently rated than cells “12” and
“15.” Thus, it is not reasonable that the risk matrix design in which c is close to 1 and
the one inwhich c is far larger than 1 are the same. This example demonstrates that, as
c changes, the information regarding each cell changes. Therefore, the invariability
of the rating scheme according to Cox’s axioms seems defective.

Next, we exhibit the designs of the two 4× 4 risk matrices in Fig. 4.18, in which
c = 1.5 and 2. The designs are given based on the SUA. To obtain the detailed
process, one may refer to Li et al. (2018). We carry out the SUA by giving different
scaling of inputs.

Comparing the twomatrices in Fig. 4.18with the normal one (the one in Fig. 4.15),
we find that the cells with the same rating in the normal risk matrix are divided into
more ratings. For example, the rating “2” in the original matrix is divided into the
ratings “2” and “3”. This is because, as c gets larger, the left-bottom cells become
more compressed, causing these cells’ information to change, and thus, the cells
which have the same rating in the normal risk matrix, become different from each
other.

To more clearly explain the change of design due to the increase of c, we first
give the variation of the corresponding probability of cell “2” is larger than “1” on
the right risk matrix of Fig. 4.18 as c changes (the probability is defined in formula
(2)). Theoretically, the mapping of the probability of c is continuous. In Fig. 4.19,
the points of probability are generated by simulation, where c increases in fixed steps
of 0.02 and, due to simulation error, the simulated points can not be connected by a
smooth line. Thus, we use the fit line (fitting of a polynomial) to reflect the trend of
the change of probability. We see that the line increases from 0.82 to 0.94 steadily.
In this case, it is set between 0.82 and 0.94, 0.85 for example, as c increases, the
relationship between the two cells changes, namely, from being equal to each other
(when the probability is smaller than) to cell “2” is larger than cell “1” (when the
probability is larger than).We next give the variation of the corresponding probability
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Fig. 4.19 Probability variation as c changes

of cell “16” is larger than “15” on the bottom of Fig. 4.18. As the figure shows, the
lowest point is around 0.96, which means that it is set to be smaller than 0.96, cell
“16” will always be larger than “15” and, thus, even if c increases, their relation will
not change.

We learn from Fig. 4.19 that whether the rating scheme changes as c increases
depends on the corresponding variation of the probability in the PCM and the setting
of α. Since the correlation between any cell pair changes at different values of c, the
rating scheme may be different at different values of c. The above analysis applies
to any form of category definition.

4.4.2 Performance of Integrating Risk Perception
on the Location of Inputs

Given different distributions of the inputs, the distribution of risk points in a cell
varies. In Sect. 4.2.2, we show some examples of the risk point’s distribution. If
two cells are differently rated, they must show the difference they contain, and the
distribution of the points in the cell is the source of the difference. For example, if
the points in a cell are evenly distributed, the assessed risk corresponding to the cell
may locate at any point in the cell with the same probability; while if the points are
normally distributed, the assessed risk will be located at the center of the cell with
high probability. What the probability directly affects is the comparison of two cells.
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Obviously, when comparing two cells using the SUA, different distributions of the
points in a cell will result in different relationships (one cell is larger than, equal to,
or smaller than the other) between the two cells (Li et al. 2018). If the relationship
between the two cells changes, it is not difficult to understand that their ratings may
be different. The following are examples of how different locations of inputs affect
the risk matrix design in detail.

To show the design integrating perception of the location of inputs, we consider
two possible forms of the location of inputs. In the first one, the two inputs are
independent, and in each category of inputs, the inputs are normally distributed,
namely, input ∼ N (the central value of the category, 0.01), as shown in Fig. 4.20.
In the second one, consequence and likelihood are also normal distribution, and
besides, they are correlated with the correlation coefficient 0.8.

We next explore whether the distribution of inputs affects the design of risk
matrices. First of all, if the inputs are evenly distributed in each cell, the risk points
are evenly distributed as shown in (a) of Fig. 4.21. But if the distribution of the inputs
is changed (e.g., the normal distribution in Fig. 4.5), the distribution of the points
in the cells will change. In Fig. 4.21, (b) shows the corresponding point distribution
in the cells with the two settings of inputs described in Fig. 4.6. In Fig. 4.21, (c) is
the point distribution integrating correlation between consequence and likelihood. If
in each category of inputs, the inputs are normally distributed, most of the points in
the cells are located in the center or on the edges of the cells, there are few points.
When the correlation between two inputs is added, most points are located along the
diagonals in each cell.

Figure 4.22 presents two designswith different distributions of inputs based on the
SUA. We see that, if the inputs are normally distributed in each category, the design
of the risk matrix is the same as that of the normal one because the information in
each cell is similar to that of the normal one. But under the second setting of the
distribution of inputs, the information in the riskmatrix is apparently different, which
leads to variation in the design. According to fundamentals of the SUA, it can be
inferred that compared with the case under the first setting, in the second setting, the
correlation between the inputs makes the difference between green and blue cells in
(a) of Fig. 4.22 so small that they should not be divided as different ones.
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Fig. 4.21 Distribution of
points in the risk matrix
under differing input
distribution
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(a) Design of the risk matrix where the consequence is normally distributed in 

each cell

(b) Design of the risk matrix with the correlation coefficient 0.8 based on (a)
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Fig. 4.22 Two designs of the risk matrix with different distribution of inputs

4.4.3 Performance of Integrating Risk Perception on Input
Category Membership

In the SUA, membership is embedded as follows: when obtaining the PCM, in the
Monte Carlo simulation, the generated sample points will be multiplied by a weight,
namely, the grade of membership. Since the weights are not the same for the input
in an input category, it is easy to understand that under different settings of input
categorymembership, the comparison results of two cellsmay change. Therefore, the
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designs of the riskmatrices given different perceptions on input categorymembership
may vary.

To reflect the change of the perception on the membership of inputs, we assume
that both of the inputs have the membership given in Fig. 4.23. In the process of
obtaining the PCM , if the inputs are multiplied by the weights which correspond
to the degree of membership, the distribution of the points in a cell will change. In
Fig. 4.24, we give the point distribution in the cell with the consequence interval
[0.25, 0.5] and the likelihood interval [0.25, 0.5]. We see that compared with the
normal case ((a) in Fig. 4.22), due to the multiplying of the weights, the largest and
the smallest points are no longer the original ones (in the normal case, in this cell,
the smallest point is [0.25, 0.25] and the largest is [0.5, 0.5]). Also, some points are
located in the cell that are not there in the normal case (see the points in the region
a, b, and c in Fig. 4.24).

Fig. 4.23 Membership of
the consequence and
likelihood
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point distribution in a cell
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Fig. 4.25 Design of the risk
matrix considering the
perception of input category
membership
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The above analysis explains how the change of input categorymembership affects
the risk matrix design by affecting each cell’s information. In Fig. 4.25, we present
the corresponding design of the risk matrix.

4.4.4 Performance of Integrating Risk Perception
on the Measure of Risks

Intuitively, different perceptions on the riskmeasurewill result in different riskmatrix
designs. The explanation is straightforward. As shown in Sect. 4.4, with different
risk measures, the shapes of the iso-risk contour are different, which will result in the
different distributions of the cells’ ratings. Therefore, we would give an affirmative
answer to Q1.

To show how different risk measures affect the design of risk matrices, we assume
an additional form of risk measure is applied in the risk matrix, namely, risk =
consequence + likelihood. Figure 4.26 reports the corresponding design. As we
would expect, since the risk is measured by the sum of consequence and likelihood,
the cells along the line with slope-1 have the same risk rating. This is because the
members of the cells have the same rating. For example, if the risk measure is of the
additional form, the points in the cells along a diagonal with slope-1 will have similar
quantitative values; while if the risk measure is changed to a multiplication form,
the points in the cells along a hyperbola will have the similar values. It is obvious
that the cells with similar values should be categorized as the same rating. That is
how risk measure works in a risk matrix design, and this mechanism is applied in
the SUA.
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Fig. 4.26 The design of the
risk matrix when risk is
measured by the addition
form
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4.4.5 Performance of Integrating Risk Perception
on Attitudes Towards Risks

Although Cox claimed regarding his method, “risk could be any smooth increasing
function of frequency and severity, not necessarily their product”, we find that, in
some cases, we will fail to design a rating scheme for the risk matrix according to
Cox’s axioms. Let us take a 4× 4 risk matrix as an example. If the risk is measured
by risk = likelihood × consequencen, where n ≥ log(0.25)/ log(0.75), then the
risk matrix will have only one color according to Cox’s axioms. We will explain this
conclusion with the aid of Fig. 4.27. First of all, the cells at the bottom of the matrix
should be green according to Cox’s axioms. When n = log (0.25)/ log (0.75), the
iso-risk contour with quantitative risk equal to 0.25 passes though points (0.75, 1)
and (1, 0.25), which means the two cells should have the same rating. When n >

log (0.25)/ log (0.75), (1, 0.25) is larger than (0.75, 1). Therefore, there is no red
cell in the rating scheme governed by Cox’s weak consistency and betweenness
axioms [3]. In a normal risk matrix, the above case will not occur since such a matrix
is symmetrical and the point (1, 0.25) is always smaller than any point in cell “16”,
whose smallest point is (0.75, 0.75). But when adapted to deal with risk aversion,
Cox’s method exposes its defects as shown above.

Next, we give the rating scheme (α = 0.85) designed according to SUA to
n = log (0.25)/ log (0.75) on the left in Fig. 4.26. Four iso-risk contours pass
through (0.25, 0.25), (0.5, 0.25), (0.75, 0.25), and (1, 0.25) are drawn in the
matrix. Compare the iso-risk contours on the left with the ones on the right, and one
finds it is obvious that the influence of risk aversion on risk matrix designs essentially
results from the change of iso-risk contours. For example, the rating distributions
in both of the risk matrices in Fig. 4.27 are in line with the corresponding tendency
of the iso-risk contours. In the left risk matrix with risk aversion, the contours are
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Fig. 4.27 Rating scheme of
a 4 × 4 risk matrix according
to Cox’s method with
n = log (0.25)/ log (0.75)
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Fig. 4.29 Probability variation as n changes

and likelihood [0, 0.25], and the one with inputs of [0.25, 0.5] and [0, 0.25], the
probability of the upper cell is larger than the left one has the trend shown on the
bottom of Fig. 4.29.

As n gets larger, the difference between two horizontally adjacent cells increases
to the maximum (the probability increases to 1), and the difference between two
vertically adjacent cells decreases to the minimum (the probability decreases to 0.5).
This reveals that, given a fixed α, as risk aversion increases, the horizontally adjacent
cells tend to have different ratings, and the vertically adjacent cells tend to have the
same rating. We can infer by these two facts that in the risk matrix with risk aversion,
right-bottom cells tend to have a higher rating than those in a risk matrix with a
neutral risk attitude.

4.5 Conclusion and Discussions

Risk matrices are risk management tools based on subjective judgments. Therefore,
risk perceptions are inevitable factors in the design/use process of risk matrices. Risk
matrices used in the literature and practice reveal that different user conceptions of
some settings of risk matrices do exist and that the settings will affect the assessment
of the risks. Therefore, such conceptions have been termed “risk perception” in this
section. We have discussed how different types of risk perception affect the design
of risk matrices, accordingly affecting risk assessment.
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We first identified five different types of risk perception in risk matrices from
the point of the risk matrix design process and the general definition of risks. Each
perception, specifically, is a perception of the setting of a particular element in the
risk matrix.We explained the five types of risk perception in detail, emphasizing how
perception affects the information given by the points in each cell. Then we provided
a brief introduction to the use of the SUA to design risk matrices, and introduce how
to integrate different risk perceptions. Our main reason for selecting the SUA was
that it can output a unique risk matrix design given the need for resolution of the risk
matrix and the design will always exist. Finally, we comprehensively explored how
risk perception affects the designs of risk matrices.

To show how each kind of perception affects the design, we integrate the percep-
tion one by one to the risk matrix design. In practice, different kinds of perception
can be integrated at the same time.

We have emphasized that, for a risk matrix, the designers and the users should
have the same conception of the risks. Differing conceptions will result in asym-
metric information, which will make the result of the risk matrix inaccurate. Thus,
in practice, risk matrices should be designed separately according to each field’s
particular risk perception.
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Chapter 5
Risk Matrix Design Assessment: Criteria
and Quantitative Indicators

5.1 Criteria Used to Assess Risk Matrix

In the risk matrix, the risk is defined as outcome and possibility (Cox 2008; Duijm
2015; Albery et al. 2016; Ball and Watt 2013). Thus, The decision-maker goes
through the following steps in designing the risk matrix: (1) Define the ratio of
consequences to probabilities (2) Map the risk values and inputs to the risk matrix
(3) Assign a corresponding level to each cell. Usually, decision-makers determine
the magnitude of the consequences and probabilities of each event based on their
experience and knowledge, so it’s not clear which definition is better. In the study
of risk matrices, the scaling of inputs is usually based on linear or logarithmic axes.
And later We’ll talk about quantifying how to come up with a standard in both
cases. Accurate mapping of risks and inputs is the core technique for designing
risk matrices and assigning a unique rating to each cell (Cox 2008; Li et al. 2018;
Wall 2011; Skorupski 2016). Therefore, given the scale of the input, the next two
steps affect the accuracy of the design and thus, the evaluation criteria to evaluate
the operation of these two steps is particularly important. Figure 5.1 exhibits the
relationship between the risk matrix design steps and the proposed criteria.

We provide a more explicit explanation of why a standard corresponding to a step
should be proposed. Let’s start with risk measurement. Risk is usually defined in
the following form like risk = f (consequence, likelihood). In essence, the risk
matrix is a graphical representation of this risk measure: (1) First, the user of the risk
matrix needs to give the input, and then (2) the risk matrix designer then employs
a particular function to output a quantitative result of the risk (this function may be
implicit in the qualitative risk matrix), and lastly (3) the risk matrix based on this
design is used to determine the level of risk of the event being evaluated (Fig. 5.2).

During the design of the risk matrix, there are three design-related issues, namely
(1) whether the risk measure function is reasonable, (2) whether the risk measure
function is consistent for each point (there are infinite risk points in a risk matrix),
and (3) whether the rating of cells is reasonable. These three questions correspond
to the three criteria presented below.
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Define the scaling of inputs

Map the risks and inputs

Assign the ratings to the cells

Risk matrix design process Corresponding criteria

Predefined and no criterion is 
proposed

Monotonicity of risk and 
consistency with risk measure

Effective resolution of risk 
ratings

Fig. 5.1 Relationship between the risk matrix design process and the proposed criteria

Risk=f (consequence, likelihood)

Define the scaling of inputs

Map the risks and inputs

Assign the ratings to the cells

Fig. 5.2 Explanation of the risk matrix design process from the measure of risk

5.1.1 Monotonicity of Risks

The first guideline presented here is the mapping capability that the decision-maker
needs to provide.

In the risk matrix, there is no fixed form to match the outcome and probability
with the risk value. If there is no quantitative description of the given consequences
and probabilities, then some scholars regard risks as the sum of the consequences
and probabilities (Pritchard et al. 2010; Hewett et al. 2004; Holt et al. 2014; Cook
2008). Figure 5.3 shows a 6×6 risk matrix with inputs textually described. Pritchard
et al. used it to assess drilling hazard risk. The same number in each grid represents
the same risk score. According to the matrix, the grid on the diagonal of the same
slope has the same risk, that is, it is more appropriate to use the following addition
formula as the mapping function: risk = consequence + likelihood.
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Fig. 5.3 A risk matrix with the risk being defined by the addition formula

Multiplication is another frequently used risk measure, risk = consequence ×
likelihood. This is the usual way people define risk measures, which are expected
consequences. See Fig. 5.4 for an example of a 3× 3 risk matrix. We give 4 iso-risk
contours, with quantitative risk values of 1/9, 1/3, 4/9, and 2/3. This formula is
employed for quantitative analysis of risk matrices (Cox 2008; Bao et al. 2018; Ruan
et al. 2015; Pickering and Cowley 2010). The iso-risk line where the risk value is
larger usually has a higher risk level.

Regardless of which metric is used, the researcher needs to determine that the
mapping function is monotonically increasing: an “increase in the outcome (the

Fig. 5.4 A risk matrix with
the risk being defined by the
multiplication formula
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probability remains the same) or an increase in the probability (the outcome remains
the same) does not result in a decrease in the specified risk” (Duijm 2015; Goerlandt
and Reniers 2016).

Intuitively, it is easy to conclude that risk with higher outcomes and probabilities
should be given a higher rating, that is, the risk should be monotonic. However,
even in the quantitative risk matrix, if we evaluate risk, it does not correspond to a
point, but a unit with an infinite number of points, which means that there will be
different quantitative values of risk with the same risk rating. This is inherent in the
risk matrix, so some point pairs violate monotony (Cox 2008; Engert and Lansdowne
1999). Since not all pairs of risk points in the risk matrix obey monotony, The degree
to which they satisfy monotony is Worthy of attention.

5.1.2 Consistency with the Risk Measure

With a good understanding of the risk metrics in the risk matrix, designers need to
assign risk ratings to different units. This distribution process will not be arbitrary.
Intuitively, the distribution of cells with specific ratings should be consistent with
the distribution of risk measures. For example, in the original risk matrix with linear
axis characteristics, if the product of result and probability is defined as risk, the
boundary of the yellow and green cells should be close to the hyperbola. A second
criterion has thus emerged to characterize the consistency between the allocation of
risk ratings and coordination of multilateral environment.

Fig. 5.5 Division of risk
ratings according to iso-risk
contours
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Fig. 5.6 Risk matrix with
iso-risk contours
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If the risk is measured by the product of outcomes and probabilities, and risk is
graded with equal risk lines since the boundary is an equal risk line, the boundary of
risk level is exactly the same as the risk measurement. (Refer to rating 2 in Fig. 5.5).
Since the cells are square in the risk matrix, this means that an iso-risk contour must
pass through two different cells (refer to Bao et al. 2018 for the proof). In this case,
the boundaries of a risk rating are no longer the iso-risk contours. For example, in
Fig. 5.6, the yellow cells are enveloped by the zig-zag broken lines (the bold red and
black lines).

The above analysis does not ask the designer of the risk matrix to classify two
risk levels according to the boundary. However, when designing the risk matrix, the
risk level is classified according to several equal risk lines determined in advance.
If a cell is between two iso-risk contours, the rating of the cell is determined. For
example, in Fig. 5.6, if a cell is between the two iso-risk contours, the rating of the
cell is rating 2. However, if an iso-risk contour line crosses a cell, part of the cell
belongs to one rating, and part of the cell may belong to another rating. (Refer to the
case where the iso-risk contour passes through the red and yellow cells in Fig. 5.6).
In this case, the designer should be able to determine which rating the cell belongs
to Ruan et al. gave their rule as follows: if most of the cell is located in a rating (its
area proportion is the largest), for example, rating A. Finally, this cell belongs to the
A rating (Ruan et al. 2015).

However, in the literature, risk matrix designers have not found a specific way to
deal with this problem. But whether or not the designer explicitly proposes a specific
approach,we assume that they follow a potential rule for determining the level of cells
to design the risk matrix. Therefore, we explore the degree of consistency between
cell ratings and risk measures based on potential rules. The greater the consistency,
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the better the risk measure is embedded in the rating allocation process. The design
of a risk matrix is not acceptable if the consistency is quite small.

The standard requires that all boundaries of adjacent ratings be consistent with
risk measures. The difficulty is that we don’t know what a risk measure is unless the
designer tells us. But there’s another way to think about it. Based on a given risk
measure, one boundary should be consistent with the other (if the risk measure is
not given in advance). This inference can be proved by the risk matrix in practice.
For example, in Fig. 5.3, for the “yellow” cells, Connect the smallest points in
each unit with a score of “6”, Also connect the largest points in each cell with a
score of “5”. When the minimum point and the maximum point are connected to
the line respectively, a series of lines with the same slope are produced. As we
discussed in Sect. 2.1, the addition formula is the appropriate mapping equation for
the risk matrix. Risk measurement is consistent with design (if the risk measure is
risk = consequence + likelihood, the slopes of lines given before should all be
−1). When risk aversion attitude (risk aversion is understood as the perception that
consequence plays a more important part in the risk score than likelihood; see Duijm
(2015), Ale et al. (2015), is embedded, the design of riskmatrix is obviously different
from that when risk attitude is neutral. For example, in Fig. 5.8, If the user requires a
risk-neutral risk matrix, the design of the risk matrix is symmetric from the bottom
left to the top right (see the left figure in Fig. 5.8) (Dethlefs and Chastain 2012). If
the user needs a risk aversion matrix, the risk matrix is designed asymmetrically (see
the right figure of Fig. 5.7, available at www.npsa.nhs.uk).

From all the examples extracted from the literature, it can be found that the
designer is trying to ensure that the risk measure is consistent in the whole risk
matrix design. This also explains that the left risk matrix in Fig. 5.7 is symmetric
with the line from the bottom left to the top right. It is easy to understand that a risk
matrix with a neutral risk attitude satisfies this symmetry, and it is easy to guarantee
that this consistency is 100%. How to ensure that risk measurements are consistent
with risk aversion in the risk matrix is the real challenge (see the right risk matrix in
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Fig. 5.7 Two 5 × 5 risk matrices with averse and neutral risk attitudes
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Fig. 5.7). So it makes sense for us to come up with consistent standards. Obviously,
the more reliable the risk matrix is, the more consistent the risk measure is.

The above analysis is based on the assumption that the risk matrix is designed
with a systematic approach. If the riskmatrix is designed solely on subjective factors,
its reliability will be reduced and it will perform poorly in terms of consistency of
risk measurement.

5.1.3 Effective Resolution of Risk Ratings

As mentioned earlier, assigning a risk level to each unit is the third step in designing
a risk matrix. This is the key to the whole risk matrix. In this step, whether the
allocation of risk rating meets the needs of decision-makers is an important criterion
to be proposed (Li et al. 2018). This criterion is referred to as the validity of risk
rating and is discussed in detail below.

The following methods are commonly used to rate the risk of a cell. First, the
input is quantified with discrete Numbers such as “1” and “2”, each cell with have
a score according to function risk = f (consequence, likelihood). The cells are
divided by several given thresholds (Dethlefs and Chastain 2012). For the risk matrix
with continuous axes, several thresholds are given first also, For a risk matrix with a
continuous axis, different rules are used to determine the rating of the unit by giving
several thresholds (refer to Ruan et al. for example Ruan et al. 2015).

It is subjective to decide to divide the ratings where the decision is chosen from
several thresholds of risks. Whether the selection of threshold is reasonable becomes
the key. Obviously, riskmatrices have several different risk levels (colors).Moreover,
each rating has several cells. As a result, when different risks are prioritized using
risk matrix tools, some risks may not be able to distinguish risk ratings. These same
levels of risk are known as risk ties (Ni et al. 2010). Because risk ties have the same
risk rating, they are difficult to distinguish. The number of cells with the same rating
can be controlled through threshold tuning. Therefore, the selection of threshold will
determine the number of risk ties in the risk matrix.

Clearly, a threshold that is not large enough leads to fewer risk rating categories,
thus increasing the number of risk ties, which leads towhat is known as low resolution
(Duijm 2015). Users want to use the tool of a risk matrix to have enough resolution,
to solve the scheduling problem with multiple risks so the risk of the low-resolution
matrix is used to distinguish different risk priorities would be useless (Li et al. 2018).

Althoughgiven the same threshold, the number of risk relationships is also affected
by the distance between adjacent thresholds. In this case, although the number of
risk levels remains the same, the distribution of risk relationships varies. Therefore,
in the process of threshold change, efficiency also changes with the priority of the
risk matrix. Therefore, a series of relatively more efficient risk matrices should be
designed. The resolution in risk matrices should not only contain the number of risk
ratings but also the distribution of the ratings. Both changes affect the efficiency of
the resolution.
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Generally speaking, the purpose of using a risk matrix is to help decision-makers
correctly evaluate risks or distinguish between different risks. Therefore, effective
problem solving is the criterion of designing a risk matrix.

Remark on the three criteria:

(1) There are three criteria to be followed in the design of the risk matrix. As a
tool for risk assessment, the first condition that should be followed as much as
possible in risk matrix design is risk monotony. Although not all risk points
in the risk matrix satisfy monotony, it is necessary to propose monotony as a
specific criterion. The consistency of risk measure seems to be easily satisfied
in a risk matrix with a neutral risk attitude. What risk matrix designers need
to pay most attention to is what extent the designed matrix can satisfy the
consistency of risk measurement and risk preference. Finally, we return to the
purpose of using a risk matrix to properly evaluate the risks to be evaluated or
to rank the strengths and weaknesses of different risks. Whether the risks are
properly assessed depends on the validity of the matrix.

(2) People may think, If the first two standards perform well in design, the third
standard will also perform well, so the three standards overlap. However,
always exist in such a situation, namely in the design, even if the monotonicity
of risk and risk measure consistency are well satisfied, but for the performance
to solve the problem is likely to be different. There are two reasons. One is that
the number of iso-hazard lines may differ, as may the quantitative values of
the decision-makers. So the resolution is different. Another reason is that the
methods used to assign levels to cells may also be different, and some methods
may follow the steps shown in Fig. 5.1 exactly, but in step 3, the methods
are different (Cox 2008; Ruan et al. 2015; Li et al. 2018). Although special
methods have been proposed to solve the problem, these steps are not strictly
followed (no risk measurement is given) (Holt et al. 2014; Thomas et al. 2014).
So all three criteria need to be considered separately, they correspond to sepa-
rate steps, but these steps are continuous. In Sect. 3, we will further discuss the
differences between these three criteria.

(3) Different decision-makers may have different criteria to improve the accuracy
of the decisions supported by the risk matrices. For example, Cox suggested
that the priorities based on risk matrices should support the right decision, for
example, in relation to resource allocation (Cox 2008). For the enterprise risk
matrix, Duijm points out that the risk matrix at the company level needs to be
different from that at the department level (Duijm 2015).Wemainly studies the
design process of the risk matrix. Other issues related to risk identification and
risk reduction are generally not considered during the design process. More-
over, the risk matrix is essentially a qualitative risk management tool and thus,
some mathematically rigorous approaches, such as the principle of translation
invariance (Cox 2008), should not be imposed on them. They should not be
imposed. We propose three standards according to the common requirements
of risk matrix users. It also summarizes the theory and practice.
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Table 5.1 Mapping of the
three indicators to the three
criteria

Number Criterion Indicator

1 Monotonicity of risks Proportion of wrong
risk pairs

2 Consistency with risk
measure

Volatility of risk
measures

3 Effective resolution of
risk ratings

Probability of correct
decision

5.2 Quantitative Indicators of the Criteria

In the previous section, three criteria were proposed to evaluate the design of a risk
matrix. Next, we will describe how to quantify these standards.

Since the three criteria we are concerned about are all quantitative indicators, it is
necessary to conduct a quantitative analysis on the risk matrix. In our approach, the
possibility and outcome axes are defined as continuous, as most researchers do when
they study risk matrices (Cox 2008; Ruan et al. 2015; Li et al. 2018). In particular,
we make the following reasonable assumptions: without providing any additional
information about the risk distribution, we assume that the points in the risk matrix
are evenly distributed (Cox 2008), The most commonly used multiplication formula
of results and likelihood is used for risk measure (Cox 2008; Li et al. 2018).1 The
following three quantitative indicators can be used to represent the three criteria
proposed in Sect. 5.1. Table 5.1 depicts the mapping.

5.2.1 Proportion of Wrong Risk Pairs (PWRP)

(1) Incentive of PWRP

In the monotony criterion, the decision-maker wants events with high-risk values to
have higher risk levels. However, in the risk matrix, due to the risk measure curve
and the square shape of the cell, some of the points are in the higher-rated cell, but the
risk value is lower, especially when the risk is defined as the product of results and
possibilities. For example, in Fig. 5.8, a risk R1 whose consequence and likelihood
are 0.4 and 0.4 is classified with a rating of “yellow”. Moreover, for another risk
R2, whose consequence and likelihood are 0.3 and 0.9, Because of the definition
of the risk matrix, it should be classified as “green”. In this case, R2 has a higher
quantitative value of 0.27, but the rating is lower. Obviously, this point doesn’t satisfy
monotony. To explain how tomeasure themonotony of the riskmatrix, we first define
the “wrong risk pair”.

1 The proposed criteria can be used in quantitative risk matrices regardless of the distribution of
risks and the measure of risks in the risk matrix. To show how the criteria are achieved specifically,
we offer this assumption.
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Fig. 5.8 The PWRP increases as the rating of a cell change irregularly

Definition of a wrong risk pair in a risk matrix. Wrong risk pairs are called if one
of the two risks has a lower risk level but a higher risk value.

By randomly selecting two points in the risk matrix, three possible scenarios can
be generated as follows: (1) One is that one point has a higher risk rating than the
other and has a higher value at risk; (2) one is that they have the same risk rating as
the other, but not the same value of risk; (3) One is that one has a higher risk rating
than the other, but lower risk. Then, the risk pairs in scenarios 1 and 2 do not violate
monotony and can be defined as normal risk pairs. But the risk pair in scenario 3
violates monotony and is defined as the wrong risk pair.

Themore errors the riskmatrix has, the lessmonotonic it is. Therefore, we propose
the followingmonotonicity index, that is, the proportion of wrong risk pairs (PWRP).

Proportion of wrong risk pairs = Number of wrong risk pairs/total risk pairs. (5.1)

Based on the definition of the wrong risk pair, we can infer that the value of PWRP
will increase if the rating of any cell is changed irregularly. For example, in Fig. 5.8,
if the risk is measured by the formula risk = consequence×likelihood, the design
on the left is obviously reasonable since the risk matrix after the rating should be
symmetric with respect to the line with slope 1 and pass through the lower-left corner.
But if changed the rating of the lower-right cell to 2, the design is no longer regular
under the measure risk = consequence × likelihood. PWRP will increase as the
area of the two-level intersection increases. Therefore, we can capture cells with
irregular levels by using PWRP during design.

(2) Algorithm of PWRP

Next, we provide the simulation method to calculate the indicator.
Step a1. Generate two points r1,i and r2,i of a risk matrix randomly, where i

represents the i th simulation;
Step a2. If the rating of r1,i is higher than r2,i and r2,i is quantitatively higher than

r1,i , or, the rating of r2,i is higher than r1,i and r1,i is quantitatively higher than r2,i ,
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then the value of the variable m will increase by 1. The variable m is set to count the
number of wrong risk pairs, with the initial value of 0; return to step a1 until i = N .

Step a3. Get the approximate value of the percentage of wrong risk pairs, namely,
m/N .

N is a relatively large number so thatm/N changes in a slight range as N increases.
Remark on the proportion of wrong risk pairs: The “wrong risk pair” here

is only for monotony. However, this does not mean that the risk matrix with the
best monotonicity is better. One may find that the wrong pairs of points occur at
the intersection of two adjacent ratings, where the equal risk line crosses the two
ratings. So, if the number of risk ratings goes down, the wrong risk pair goes away.
If only one level is kept. At this time, PWRP is 0, and the risk matrix completely
satisfies the monotonicity, but the risk matrix also loses its function. In other words,
if only considering the monotony criterion of risk, it may lead to wrong judgment
on the design of the risk matrix. For example, as shown in the previous example, a
risk matrix with higher monotony may have a lower effective resolution. Therefore,
the comparison between the two risk matrix designs based on monotony is based on
the fact that the performance of the two risk matrix designs is almost the same under
other conditions. This condition also applies to the other two cases.

(3) PWRP with logarithmic axes

In theoretical studies of riskmatrices it is often necessary to assume that the input axis
is linear, but using a logarithmic input axis is more common in practice (Iec 2009;
Thomas et al. 2014). Therefore, discussing how to obtain the quantitative indicators
with logarithmic axes is necessary.

Given the risk measure, namely, risk = f (consequence, likelihood), in the
logarithmic axes system, the risk measure was also changed to a logarithmic form,
i.e., log(risk) = log( f (consequence, likelihood)). In this case, each risk point in
the risk matrix with a logarithm gets a value based on the risk measure. Therefore,
PWRP can be easily obtained by using Eq. (5.1).

5.2.2 The Volatility of Risk Measures (VRM)

(1) Incentive of VRM

What we have stated is that we should measure the consistency between the risk
measure and the boundaries. However, we, as the assessors who design the risk
matrix usually do not know the risk measure for a given risk matrix by the designer.
Therefore, measuring consistency in another way is a good way. Before designing a
risk matrix, assuming that the designers should have a predetermined risk measure
is reasonable. If we give the boundary of two ratings, then the risk measure of this
boundary will be determined. It is noticed that if all the boundaries are consistent
with the predetermined risk measure, there will be no differences between the risk
measures of any two boundaries. Otherwise, each boundary has a particular risk
measure, which shows the difference between these risk measures. Thus, we use the
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volatility of risk measures (VRM) of all the boundaries to indicate the consistency
between the risk measure of the risk matrix displayed and the predetermined risk
measure by the designer.

(2) Algorithm of VRM

When the VRM is used, we need to obtain the risk measure of each boundary sepa-
rately. Although the contours dividing the two ratings are not zigzag boundaries of
the two ratings, some contour information is included. Therefore, we try to use the
information contained in the zigzag boundary to fit the equal risk line.

Risk preference is a key factor affecting risk matrix design. It is common prac-
tice for researchers to add risk aversion coefficient into the standard multiplication
formula to express the degree of risk aversion, risk = consequencen × likelihood,
n ≥ 1 (Ale et al. 2015; Thomas et al. 2014). When n = 1, the designer is risk-
neutral. Under different risk levels of the risk matrix, designers may use different
risk aversion coefficients, so different boundary measures will be inconsistent.

The risk measures of boundaries have the unified form as follows:

riski = consequenceni × likelihood, (5.2)

where riski and ni denote the risk and risk aversion of the i th iso-risk contour,
respectively.

The logarithm form is as follows:

log(riski ) = ni × log(consequence) + log(likelihood). (5.3)

Next, we need to estimate log(riski ) and ni . To provide symmetry in the estimated
iso-risk contour when n = 1, Using the symmetrical least square method to estimate
the log(riski ) and ni 2 (Wu et al. 2013). Sample data are provided below.

Step b1. Get the edge Shared by any two adjacent levels.3

Step b2. Get the median points of the shared edges.
Any point on the edge can be used theoretically, but it is better to use the median

edge point to represent the average information. Figure 5.9 shows the estimated
iso-risk contours of the 3 × 3 risk matrix. For example, in order to obtain the iso-
risk contours between the green and yellow ratings respectively, four Shared edges
need to be found first, and four median points of the four sides need to be obtained,
log(riski ) and ni can be estimated by symmetric least square method.

If ni = n j , i �= j , it is believed that the two iso-contours have the same risk
measure (riski and risk j must be different, representing different risk values), and
the two iso-contours can be superimposed by translation. Therefore, for the same ni ,
Even if we change the value of riski , the risk measure remains unchanged. Now for

2 When the sample data have linear symmetry, if we adopt the least square method, the estimated
iso-risk contour has no linear symmetry. The estimation formula of the simple linear regression
model is given in Appendix 1.
3 If there is only one edge, the iso-risk contour between the two adjacent ratings cannot be
determined.
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Fig. 5.9 Two estimated
iso-risk contours of a 3 × 3
risk matrix
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different iso-risk contours, we establish that riskp = 1, where p = 1, 2, . . .. In this
case, the risk measure of contour i has not changed. Even the n of the contours are
different, the point (1, 1) is going to be passed by all the iso-risk contours (because
1risk = 1niconsequence × 1likelihood ).

Moreover, the slopes of the iso-risk contourswith different n at (1, 1) are different,
which distinguish the contours (see Fig. 5.10). Therefore, the variance of the slope
can be used to measure the volatility of the risk measure, which is expressed as
follows:

voli tili t y o f risk measures =
N∑

i=1

(slopei − slope)2/(N − 1), (5.4)

The number of iso-risk contours is equal to N, slopei represents the slope at
(1, 1) of the iso-risk contour of 1 = consequenceni × likelihood, and the average
of slopei is slope.

Since the slope of the contour at (1, 1) likelihood = consequence−ni (namely,
1 = consequenceni × likelihood) is −ni , we can rewrite Eq. (5.4) as:

voli tili t y o f risk measures =
N∑

i=1

⎛

⎜⎜⎜⎝

N∑
i=1

ni

N
− ni

⎞

⎟⎟⎟⎠

2

/(N − 1) (5.5)

Obviously, higher volatility means a lower consistency with a predetermined risk
measure, which means the volatility is a good indicator.
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Fig. 5.10 Slopes of two
different iso-risk contours at
(1, 1)

consequence

lik
el

ih
oo

d
(1, 1)

(3) VRM with logarithmic axes

The VRM algorithm is complex to use in linear axes. But it’s much easier on the
logarithm axes.

Under the condition of the logarithmic axes, the risk measure with risk aversion
coefficient is transformed from risk = consequencen × likelihood to log(risk) =
nlog(consequence) + log(likelihood). Therefore, the contours become a series of
sloping lines as shown in Fig. 5.10. The advantages of the logarithmic scale axis are
illustrated by Levine in Fig. 5.11 (Levine 2012). In this case, the volatility of the risk
measure can be obtained simply by calculating the variance of these slopes.

Assume that all the diagonal lines have the form of log(riski ) =
ni log(consequence) + log(likelihood). The volatility of the risk measure,
as the variance of the slope, namely, voli tili t y o f risk measures =
N∑
i=1

(∑N
i=1 ni
N − ni

)2
/(N − 1). According to the algorithm, it can be found that the

performance of VRM in the logarithmic and linear axes is the same. This seems to
be a good result, indicating that the VRM is available on the most commonly used
linear and logarithmic axes and that the VRM is independent of the form of the axis.

5.2.3 Probability of a Correct Decision (PCD)

(1) Incentive of PCD

For the criteria of effective resolution of risk ratings, we put forward the PCDmethod.
What is the problem with a low-resolution risk matrix? Essentially, the risk matrix
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Fig. 5.11 Iso-risk contours
in a risk matrix with
logarithmic axes
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tool is used to prioritize different risks4 (Duijm 2015). Obviously, a good risk matrix
needs to have the function to help the decision-maker make the right decision; That
is, multiple risks can be distinguished using this risk matrix. However, for those point
at risk ties, it’s hard to find the difference between their value at risk, because they are
in the same rating, which may cause the decision-maker to make the wrong priority
ranking. Therefore, it is necessary for us to use the probability of the correct decision
to represent the effective solution.

Any two risks may exist two kinds of risk relationship: (1) different ratings or (2)
the same rating.

We first consider the first. If two risks have different risk ratings, the probability
exists that the decision-makers will assign a lower rating to a quantitatively higher
risk. This corresponds to thewrongpairs described before. In this case, the probability
is calculated as follows.

Probabili t y o f a correct decision in case 1 = 1 − Probabili t y o f decision error in case 1

= 1 − Number of wrong risk pairs

total risk pairs
. (5.6)

In general, if there are fewer types of risk matrix ratings, there will be fewer
wrong risk pairs. However, when the risk matrix has fewer ratings it also has a lower
resolution, there will be more risk ties.

4 Risk matrices are used to determine the acceptance of risks or prioritize risks. In this section, we
focus on the latter.



104 5 Risk Matrix Design Assessment: Criteria and Quantitative Indicators

Let’s talk about the second case. When the two risks have the same level, the two
risks may have the following five positions:

(a) The two risks are in the same cell;
(b) The two risks are in different cells, and a risk is to the right of the other risk;
(c) The two risks are in different cells, and a risk is above the other risk;
(d) The two risks are in different cells, and a risk is to the upper right of the other

risk;
(e) The two risks are in different cells, and a risk is to the lower right of the other

risk.

For case (a), decision makers cannot judge which risk level is higher. In this
case, the probability that they make the right or wrong ranking is 0.5. For case (d),
decision makers would give a higher rating to the risk in the upper-right cell. The
occurrence probability of wrong risk pairs in case (d) is 0 since the upper-right cell
is strictly larger. For cases (b) and (c), the decision makers will choose the right or
the upper one because one of the inputs is the same and the other input is larger. In
this case, calculate the corresponding probability. For case (e) decision makers could
not tell which one would have a higher rating, so they picked a scheme at random
and assumed that the probability of it being wrong was 0.5. Therefore, we should
summarize all five different cases and give a total PCD estimate.

Comment on the difference between PWRP and PCD:

(1) Monotony is a basic criterion that both researchers and practitioners of risk
matrix care about and attach great importance to. Therefore, it is reflected by
a single standard: PWRP. But PCD is used to calculate the misclassification
probability of two different risk ratings. PWRP focuses on the function when
the risk matrix is designed, while PCD focuses on the efficiency when the risk
matrix is used. Clearly, a risk matrix with both high PWRP and PCD is better
designed.

(2) When calculating PCD, the wrong risk pairs used in calculating PWRP are
also used. However, these wrong risk pairs have a small influence on PCD.
Figure 5.12 shows the possible areas of wrong risk pairs. It’s easy to see that
these areas are near the border (the bold segments in Fig. 5.12). PCD is used to
measure the probability of the correct ranking of two kinds of risks. On the one
hand, we should have fewer boundaries or fewer risk ratings, thus reducing
the proportion of wrong risk pairs. However, on the other hand, cutting the
number of risk ratings will produce more risk ties, which makes it difficult to
make the right decision. According to the data in the section, the more types of
risk levels (the input is unchanged), the more points violating monotony in the
risk matrix, that is, the higher PWRP is. However, PCD will be lower because
of the decrease of risk ties. In other words, the risk ties are the main factor
affecting PCD. Thus, the two indicators are indeed facing different standards.
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Fig. 5.12 Regions where
wrong risk pairs may exist
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(2) Algorithm of PCD

As discussed, there are many scenarios to consider in the PCD approach. So it’s very
complicated to compute PCD analytically. Therefore, We use the risk matrix PCD
simulation method as follows:

Step c1. Generate two points r1,i (c1,i , l1,i ) and r2,i (c2,i , l2,i ) of a risk matrix
randomly, where c represent consequence and l likelihood, and i represents the
ith simulation;

Step c2. If c1,i × l1,i is quantitatively higher than c2,i × l2,i and the rating of r1,i
is higher than r2,i , or, c2,i × l2,i is quantitatively higher than c1,i × l1,i and the rating
of r2,i is higher than r1,i , then the value of the variable m will increase by 1. If c1,i
equals c2,i , l1,i is larger than l2,i and the rating of r2,i is higher than r1,i , or, c2,i equals
to c1,i , l2,i is larger than l1,i and the rating of r1,i is higher than r2,i , then the value of
the variablem will increase by 1. If l1,i equals l2,i , c1,i is larger than c2,i and the rating
of r2,i is higher than r1,i , or, l2,i equals to l1,i , c2,i is larger than c1,i and the rating of
r1,i is higher than r2,i , then the value of the variable m will increase by 1. Otherwise,
the value of the variable n will increase by 1. The variable m with the initial value 0
is set to count the number of risk pairs in the case where the probability cannot be
given straightway. The variable n with the initial value 0 is set to count the number
of risk pairs in the case where the probability is 0.5. Return to step c1 until i = N .

Step c3. The approximation of the correct decision percentage can be obtained as
follows, namely,m/N + n/N × 0.5. N is a relatively large number so that m/N +
n/N × 0.5 changes in a very small range as N increases.



106 5 Risk Matrix Design Assessment: Criteria and Quantitative Indicators

(3) PCD with logarithmic axes

The analysismethod for thewrong decision is the same in the logarithmic axis system
as in the linear axis system.

Remark on the three quantitative indicators: From the perspective of theo-
retical analysis, we put forward the wrong point pairs rate and the volatility of risk
measurement, and from the perspective of the application, we put forward the correct
decision rate. Although these three criteria are presented from different perspectives,
the good performance of one criterion does not mean that the overall design of the
risk matrix is satisfactory. For example, the lower the risk level of the risk matrix, the
fewer wrong pairs there will be and the smaller the proportion of error-prone regions
on the boundary. However, the lower the resolution will increase the probability of
decision-makers making mistakes. Moreover, a trade-off between the dimension of
theoretical accuracy and practical applicability should be made. If the criteria are
used to optimize the design of a particular risk matrix, Pareto optimality should be
considered. However, if these criteria are used to compare different designs in the
same riskmatrix when the design does not reach Pareto optimality, maybe one design
will perform better than another in all three criteria.

5.3 Applications of the Criteria

5.3.1 Instruction for Practitioners Designing Risk Matrices

The audience of the criteria is practitioners of designing risk matrices. Several steps
are particularly important in risk matrix design, e.g., defining scales of consequence
and likelihood, classifying likelihood and consequence into different categories,
assign a rating (color) to each cell. The most difficult step is setting a risk rating.

As far as we know, two rules have been formally proposed (Cox 2008; Li et al.
2018). We can’t simply judge which rule is better, because both of these rules seem
reasonable at some point. In practice or the literature, it is often entirely dependent
on subjective judgment to determine the priority of risk in the risk matrix. However,
subjectivity does not mean arbitrariness—at least, the cell with higher consequence
and likelihood will have a higher risk priority. This subjectivity means that decision-
makers have yet to find a uniform and correct way to help rate risk.

Therefore, our proposed standard is aimed at (1) Providing criteria for comparing
riskmatrix designs, (2)What should be noted for practitioners designing riskmatrices
with new rules, and (3) It provides solutions for practitioners to choose the best of
several risk matrices designed.

We will introduce in the next section, how to apply these three standards in prac-
tice. Although the criteria are not proposed as a guide for designing risk matrices,
The level of a particular cell can be determined by them. As mentioned before, the
optimal values of these three criteria are difficult to obtain directly, but we may
employ them to assess the current risk matrices in the literature.
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5.3.2 Determine the Risk Rating of Some Cells

According to Cox’s three axioms, the risk ratings of the nine cells are shown in
Fig. 5.13: the top-right cell is rated 3, the bottom row and left column are rated 1,
and the others are rated 2. First of all, Cox stated in this risk matrix that the risk is
measured by the product of consequence and likelihood. Therefore, if only the risk
matrix design is an asymmetric aspect, the design is reasonable. Then we focus on
the cells that are rated 2. According to Cox’s between-ness axiom, rating 2 is not a
comparable rating because some of the points in cells rated 2 are larger than some
points in cells rated 3, and some are smaller than some points in cells rated 1.

We drew a series of equal risk lines on the risk matrix. In addition, we found
that most of the points in the central cell have the same value as the midpoint in
the upper-left cell. Therefore, if we want all three ratings to be comparable (rating
3 higher than 2, rating 2 higher than 1), we want to know if we should change the
central cell rating to 1. Figure 5.14 is the risk matrix designed according to the
sequential updating approach proposed by Li et al. (2018). In Fig. 5.14 the area of
the intersection part is smaller. According to our analysis, Fig. 5.14 is better designed
based on monotony. The number of green risk ties increases by 1, while the number
of yellow risk ties decreases by 1. Therefore, we cannot compare intuitively the
performance of the two designs in effective resolution.

The two designs were evaluated using the three criteria and the results are reported
in Table 5.2.

The results show that if the rating of the central cell is changed to 1, the risk
measure is still consistent with the design. It reduces the likelihood of making the

Fig. 5.13 The design of a
3 × 3 risk matrix according
to Cox’s axioms
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Fig. 5.14 The design of a
3 × 3 risk matrix when the
rating of the central cell is 1
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Table 5.2 Comparison of
two designs of a 3 × 3 risk
matrix according to the three
criteria

Case Proportion of
wrong risk
pairs

Volatility of
risk measures

Probability of
a correct
decision

The central
cell is rated 2

0.0111 0 0.8390

The central
cell is rated 1

0.0058 0 0.8229

right decision a little bit. However, a significant decrease in the proportion of wrong
risk pairs means that the theoretical accuracy of the design has increased. However,
a significant decrease in the proportion of wrong risk pairs means that the theoretical
accuracy of the design has increased. In this sense, changing the rating of the central
unit from 2 to 1 theoretically makes the design more accurate, and the sequential
updating method of designing the risk matrix is better in this case.

5.3.3 Assessing Some of the Risk Matrices Used
in the Literature

Using these criteria to evaluate the design of risk matrices, risk matrix design does
not have a standard to determine which quantitative metrics should be used. The
purpose of this section is to calculate the quantitative indicators of risk matrices
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commonly used in the literature. This process will help us to recognize the normal
range of indicators.

Next, we represent only some of the risk matrices smaller than 6×6 in size, which
are the most common ones.

The 2 × 2 risk matrices are the smallest and are presented in Fig. 5.15. The
bottom-left cell has a rating of “1”, the top-right cell is rated “3”, and the rest are
rated “2”(Cox 2008).

The common 3× 3 risk matrices were discussed in Sect. 5.3. A 3× 4 risk matrix
was used by Iverson et al. To evaluate climatic change responses of forested habitats.
It is shown in Fig. 5.16 (Iverson et al. 2012).
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Fig. 5.15 A 2 × 2 risk matrix
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Fig. 5.16 A 3 × 4 risk matrix
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Fig. 5.17 Two 4 × 4 risk matrices

According to three axioms, Cox proposed the possible design of 4×4 risk matrix,
which are shown in (a) of Fig. 5.17, in which the likelihood and consequence axes
are evenly divided. A differently designed of 4× 4 risk matrix Presented by Duijm,
which is shown in (b) of Fig. 5.17 (Duijm 2015).

The most common is 5× 5 risk matrices. Dethlefs and Chastian used a 5× 5 risk
matrix to assesswell integrity risk. Discrete scores from 1 to 5 are used to describe the
categories of results and possibilities (in Fig. 5.18) (Dethlefs andChastain 2012). The
National Health Service (NHS) in the United Kingdom also used a 5× 5 risk matrix
to rank risks (b in Fig. 5.18, available at www.npsa.nhs.uk). The federal highway
administration uses a 5× 5 risk matrix to prioritize risks (c in Fig. 5.18) (Cox 2008).

The ISO (2009) also provided an example of a 5×6 risk matrix (in Fig. 5.19) (Iec
2009). Moreover, Pritchard et al. used a 6× 6 risk matrix to manage drilling hazards
(b in Fig. 5.19).

Some of the risk matrices described above are qualitative or semi-quantitative,
that is, they are input axes described in adjectives or discrete Numbers. However, the
three evaluation criteria previously set are used for the quantitativematrix. Therefore,
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Fig. 5.19 A 5 × 6 risk matrix and a 6 × 6 one

it is necessary to convert qualitative or semi-quantitative risk matrix into the quanti-
tative matrix. The operation is as follows: divide the input axes into equal intervals
according to the number of categories. Such as, if the consequence of a risk matrix
has five categories, the corresponding intervals are [0, 0.2), [0.2, 0.4), [0.4, 0.6),
[0.6, 0.8), [0.8, 1]. We think such dividing is reasonable because it is derived from
the distribution of the risk matrices ratings. For example, in the qualitative risk
matrices, Cells with the same slash are rated the same, and in the semiquantitative
risk matrices, the discrete numbers are ordered.

After preprocessing the risk matrix, we show the quantitative indicators of the
three criteria in Table 5.3 according to the steps we introduced in Sect. 5.2.

As can be seen from Table 5.3, since the cell is square and the risk is defined as a
multiplicationmeasure, there is no riskmatrixwhere all risk pairsmeetmonotonicity.
First of all, different designs will present different results even for the same risk
matrix, which indicates that the change of design method does affect the overall
monotony of the risk matrix. In addition, because false risk pairs only exist in the
intersection region of two adjacent ratings, the proportion of false risk pairs is less
than 10%. When the risk matrix is larger, the intersection area will increase and the
proportion of the wrong risk pairs will increase. However, when the proportion of
the wrong risk pairs is larger, the higher the dimension, the better the design effect
of the risk matrix. For example, in cases 9 and 10, because case 10 has a lower risk
rating than case 9, case 10 has a lower proportion of design wrong risk pairs.

For the volatility of risk measures, we know that if the designers design a risk
matrix with the same dimensions of likelihood and consequence (such as 3 × 3 or
4×4) are risk-neutral, the risk measure is completely consistent with the risk matrix,
namely, the volatility of risk measures is 0. This is because the designer knows that
the risk matrix should be designed to be symmetric with the line from the bottom
left to the top right. However, if the number of categories of possibilities and results
is different, it is difficult to design a risk matrix that is completely consistent with
the risk measurement, even if the designer wants to be risk-neutral. (see case 3 for
example). In addition, the consistency of risk measures decreases as the risk level
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Table 5.3 Quantitative indicators of the three criteria under different cases

No Case Source Proportion of
wrong risk pairs

Volatility of risk
measures

Probability of a
correct decision

1 2 × 2 risk
matrix in
Fig. 5.15

Cox (2008) 0.0484 0 (risk neutral) 0.7645

2 3 × 3 risk
matrix in
Fig. 5.13

Cox (2008) 0.0111 0 (risk neutral) 0.8390

3 3 × 4 risk
matrix in
Fig. 5.16

Iverson et al.
(2012)

0.0317 0.0112 0.8502

4 4 × 4 risk
matrix in (a) of
Fig. 5.17

Cox (2008) 0.0159 0 (risk neutral) 0.8738

5 4 × 4 risk
matrix in (b) of
Fig. 5.17

Duijm (2015) 0.0244 0 (risk neutral) 0.8469

6 5 × 5 risk
matrix in (a) of
Fig. 5.18

Dethlefs and
Chastain (2012)

0.0189 0 (risk neutral) 0.8757

7 5 × 5 risk
matrix in (b) of
Fig. 5.18

The National
Health Service
(NHS) in the
UK, available at
www.npsa.
nhs.uk

0.0651 0.2335 0.8488

8 5 × 5 risk
matrix in (c) of
Fig. 5.18

Federal
Highway
Administration,
2006 Cox
(2008)

0.0523 0.6629 0.8439

9 5 × 6 risk
matrix in (a) of
Fig. 5.19

Iec (2009) 0.0686 0.8745 0.8325

10 6 × 6 risk
matrix in (b) of
Fig. 5.19

Pritchard et al.
(2010)

0.0444 0 (risk neutral) 0.8376

increases, because the more risk levels there are, the harder it is for designers to
ensure consistency.

Wrongdecisions occur onlywhen two risks are in the same rating unit orwhen they
constitute the wrong risk pairs. However, the probability of both cases is small, so the
probability of correct decision is relatively large, about 0.85, as shown in the table.
Still, every different design has a different probability. But because the probability of
making a correct decision is influenced by two factors—the proportion of wrong risk
pairs and the number of risk ratings—the difference in probability is not significant.
Both a smaller proportion of wrong risk pairs and a larger number of risk ratings

http://www.npsa.nhs.uk
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will improve the probability of a correct decision. For example, in cases 6, 7, and
8, the design of the risk matrix in case 8 has the fewest risk ratings (the number
of the average risk ties is the smallest) and thus has the smallest probability of a
correct decision. In cases 9 and 10, the design of the risk matrix in case 10 has fewer
risk ratings but has a lower proportion of wrong risk pairs than the matrix in case 9,
and at last, it has a higher probability of a correct decision, which suggests that the
proportion of wrong risk pairs has a greater impact than the number of risk ratings.

Finally, for the same risk matrix, there is no design in which all indicators reach
the optimal value. However, for different designs of the same risk matrix, one design
may perform better than another in all the indicators. For example, for the 4× 4 risk
matrices, the designs in cases 4 and 5 both are risk-neutral; however, the design in
case 4 has a lower proportion of the wrong risk pairs and a higher probability of a
correct decision. This further shows It is feasible to use these criteria to improve the
value of one or more indicators to improve the risk matrix design.
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Chapter 6
Risk Matrix Aggregation: A General
Framework

6.1 Term Explanation of Risk Matrix Aggregation

In practice, many risk scenarios are consisting of several individual risks. To make
the right decisions at the whole organization level, decision-makers have to assess
the overall risks rather than single risks (Kouvelis et al. 2011; Acharya et al. 2013;
Bernard et al. 2014). Risk aggregation is the process to obtain the overall risk in
a certain way based on the multiple individual risks. In the cases where data are
sufficient, the overall risks can be assessed by quantitative methods (Binkowitz and
Wartenberg 2001). For instance, in a bank, the overall risk should be the aggregated
result of market risk, credit risk, operational risk, and so on; and the result can be
obtained using copulas (Li et al. 2015).

However, there aremany caseswhere data is not sufficient enough to assess overall
risks through quantitative methods (Wu et al. 2019; Shao et al. 2012; Gao et al. 2013;
John et al. 2014; Lyu et al. 2020). In a vague environment where data are sparse, risk
matrices have been popular and effective tools to assess individual risks due to rrrrr
simplicity and low reliance on data (Iec 2009; Iverson et al. 2012; Ruan et al. 2015;
Ni et al. 2010; Garvey and Lansdowne 1998; Oliveira et al. 2018; Hsu et al. 2016).
Figure 6.1 presents a typical 3 × 3 risk matrix. Therefore, obtaining overall risk by
aggregating several individual risks measured with risk matrices is considered. Since
a particular risk is measured by a pre-designed risk matrix, for simplification, the
concept of ‘aggregating risk matrices’ is substituted for ‘aggregating individual risks
measured by risk matrices’ (Duijm 2015; Iec 2009; Bao et al. 2018). The process
that obtaining the overall risk through ‘aggregating risk matrices’ is defined as risk
matrix aggregation. Figure 6.2 presents the notion of risk matrix aggregation.

It is imperative to do a further explanation about the aggregability of riskmatrices.
Few extant works of literature concerned about the aggregation of different risks
measured with risk matrices and even ISO state that ‘risks cannot be aggregated’
(Iec 2009). The notions of non-aggregability of risk matrices are supported by two
main pieces of evidence, namely, incomparability of different qualitative risk ratings
and incomparability of different types of risk (Bao et al. 2018; Duijm 2015; Iec

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
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Fig. 6.2 The notion of risk matrix aggregation

2009). Using a risk matrix to assess the individual risks, some risk scenarios can be
clearly compared by qualitative descriptions, for example, high risk is more severe
than low risk and a scenario with three high risks is more severe than a scenario with
three low risks. However, we seem unable to differentiate whether a scenario with
high risk and a low risk implies greater risk than a scenario with two medium risks.
The second piece of evidence is easy to understand. For different risks, the types of
consequences could be economic loss, casualties, and so on. Due to different types
of consequences, risks can’t be aggregated.

The obstacles analyzed above will be conquered with the usage of the normalized
quantitative risk matrices. Using normalized quantitative risk matrices is the precise
and basic step of the aggregating risk matrix. Then, a general framework for risk
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matrix aggregation is proposed which is the major par. The basic idea is to transform
the risk matrices into other equivalents to operate the aggregation process. Based on
this framework, three methods, namely, the fuzzy set method, the interval number,
and the probability density function methods, are introduced. The detailed analyses
will be presented in the next sections.

6.2 Normal Framework to Aggregate Risk Matrices

In this section, a more general framework is extracted to aggregate individual risks.
Under this normal framework, based on the different understanding of the points in
risk matrices, we can develop different aggregation methods. The normal framework
of risk matrix aggregation mainly has four steps, they are: (1) Assessing individual
risks according to the normalized quantitative risk matrices and getting the rating
of the risks, (2) Finding appropriate expressions of the risk ratings, (3) Aggregating
individual risks by composition methods and getting the expression of the overall
risk, and (4) Transforming the composition results to specific values. Figure 6.3 gives
a more intuitive view of the risk matrix aggregation framework. The framework is
described in detail next.

6.2.1 Assess Individual Risk According to the Normalized
Quantitative Risk Matrices

As the researchers suggest, the input of the risk matrix, namely, consequence and
likelihood, should be described with numerical intervals (Bao et al. 2018; Li et al.
2018; Cox 2008). For example, the category ‘low’ of consequence corresponds to
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the interval of ($0M, $30M), and the category ‘Medium’ of likelihood corresponds
to the interval of (1/3, 2/3). Besides, the quantitative descriptions of consequences
should be normalized from 0 to 1 as the qualitative ratings of consequences is the
descriptions of the relative severity of a risk, instead of the magnitude (Cox 2008; Ni
et al. 2010). This settingmakes different types of consequences comparable and even
aggregatable (Cokorilo et al. 2014). Figure 6.1 presents a normalized quantitative
risk matrix. Using normalized quantitative risk matrices to assess individual risk can
reduce the impact of subjective judgment and make mathematical operations on risk
matrices possible, which makes risk matrix aggregation feasible.

After obtaining the normalized quantitative risk matrix, the ratings of risks conse-
quence and likelihood are needed for decision-makers to acquire the rating of the
risks. Due to the difference in knowledge and experience of decision-makers or
experts, the categories of consequence and likelihood to the same risk may be
different. However, to guarantee the uniqueness of the risk rating, decision-makers
or experts must agree on the rating of risk consequence and likelihood.

The process of assessing the risks with the normalized quantitative risk matrix is
the precise and the basic step to aggregating, and it is shown to the left of the brace
in Fig. 6.4. The following steps are carried out based on these assessed risks and the
corresponding risk matrices.

Fig. 6.4 The uncertainty of
a risk value belonging to a
risk rating
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1/3
2/3

1

Consequence
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6.2.2 Find the Appropriate Expressions of the Ratings

Using a risk matrix to assess the risks, the outputs are the rating of these risks.
Therefore, ‘aggregating individual risksmeasuredwith riskmatrices’ is equivalent to
‘aggregating ratings of individual risks measured with risk matrices. However, as the
analyses above, we can’t acquire the relative severity of the risk portfolio according
to qualitative risk ratings. It is intuitive to consider finding appropriate mathematical
expressions of the rating so that we could do further aggregation operations.

In a risk matrix, there are infinite points. So each rating of the risk matrix is
made up of an infinite number of points. It is essential to understand the meaning of
these points. From the process of assessing risks with a risk matrix, it can be easily
understood that a point presents one possible location of the risk to be assessed, and
the value of the point, which is the product of the consequence and the likelihood, is
the relative severity of the risk. Based on the different understanding of points and
their risk value, different expressions of rating may be obtained. It will be explained
in detail next.

In the normalized quantitative risk matrix, as the risk value is measured by the
product of the consequence and the likelihood (Cox 2008), the points with the same
risk value may locate in different ratings, which results in the uncertainty of a risk
value belonging to a risk rating. Figure 6.4 presents the uncertainty of a risk value
belonging to a risk rating intuitively. In the figure, there is an ISO-risk contour, the
points on the ISO-risk contour may have a different rating. Therefore, we need to
measure the degree that a risk value belongs to a rating, which is an analogy to fuzzy
set (Bao et al. 2018).

Supposed X = {x} is a space of objectives, A belongs to X, that is, A is the subset
of X. The membership function µA(x) ∈ [0, 1] represents the degree of x belonging
to A. The larger theµA(x), the higher the degree of membership of x in A. As shown
in Fig. 6.4, an ISO-risk contour passes through different cells which have different
ratings. Thus, for a particular risk value in a different rating, it has a corresponding
membership. Therefore, each risk rating could be seen as a membership function
consisting of the risk values of the points and their degree of membership.

A fuzzy set is just one kind of possible expression of risk ratings. Next another
two expressions, namely, the interval number and the probability density function
will be introduced.

As analyzed above, each rating consists of an infinite number of points, and these
points have different risk values. Therefore, it is intuitive to adopt interval numbers to
express the risk ratings. An interval number of a rating contains all the possible risk
values of the rating. The interval number can be obtained by finding the maximum
and minimum boundary values. In general, the lower-left corner of the risk matrix
has the lowest value of risk and the upper right corner has the highest value of risk.
Therefore, interval numbers can be used to denote a certain rating. In Fig. 6.5, by
determining the maximum and minimum risk values which are circled in the figure,
the rating green can be described by interval number [0, 1

3 ].
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Fig. 6.5 Rating expressed
by interval number
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The probability density function is considered as the expression of the rating of
the risk matrix. Since each point in the rating is a possible location of the risk. To
obtain the density function of the risk valve in a rating, we first obtain the cumulative
distribution function FX (r) = P(X ≤ r); where r denotes the given risk value
in rating G (green), Y (yellow), or R (red). As shown in, given a risk value r, the
probability of X ≤ r in rating G can be approximately equal to the proportion of
shaded area in the whole area of G. The probability density function of r in a certain
rating can be obtained by deriving the cumulative distribution function (Fig. 6.6).

Three possible expressions of risk rating, which reflect the information of the
rating from three different perspectives, are introduced above. It’s because the risk
rating has infinite points, not a single point, that we can construct these expres-
sions. Based on the expressions, aggregating of risk rating is operated. Next, we will
introduce it detailedly.
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Fig. 6.6 Express the rating
by the cumulative
distribution function
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6.2.3 Aggregate the Individual Risks by Composition
Methods

Given the mathematical expressions of the rating, the severity of the overall risks can
be obtained by using some kinds of composition methods. It should be noted that
different aggregation methods are adopted when different expressions of risk rating
are used.

When the ratings of risks are denoted by the fuzzy membership function, we
make use of some mature techniques of fuzzy sets to aggregate risk matrices. For
any two fuzzy sets, the most used composition method is the max–min rule shown
in Zimmermann (2001):

µA∗B(z) = max
z=x+y

min{µA(x), µB(y)} (6.1)

Here, all risks are assumed to be independent of each other. Therefore, by repeat-
edly using the rule in Eq. (6.2), the results of operations of two or more risk ratings
which can be seen as fuzzy sets including risk value and its degree of membership
can be achieved by the following rule:

µA1+A2+···+Ai+···+An (z) = max
z=x1+x2+···xi+···+xn

min{µA1(x1),

µA2(x2), · · · , µAi (xi ), . . . , µAn (xn)}
(6.2)

where µAi (xi ) denotes the degree of xi in set Ai (or rating Ai ) and z = x1 + x2... +
xi ... + xn .
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If the risk ratings are expressed by interval numbers, the aggregating of risks rating
should be based on the addition principle of the interval number. As the sum of the
two-interval numbers is an interval number, the result of the risk rating aggregating
is an interval number too.

Similarly, when the expression of the risk ratings is the probability density func-
tion, to obtain the overall risks, we should acquire the probability density function
of the sum of the individual risk value. It will be introduced in detail next section.

As analyzed above, the composition methods help aggregate several risks into
the overall risks which have the same form of expression as the individual risks.
If individual risk rating is expressed by the interval numbers, the expression of the
aggregated risk still is interval number.

6.2.4 Transform the Result of Aggregation into a Specific
Value

The above results are mathematical expressions, which means comparisons of any
outcomes are difficult. As the particular expressions of the aggregated risk can’t be
compared directly, the relative severity of the aggregated risk is still not comparable
by far. To compare the relative severity of the overall risks of the risk portfolios, the
expressions of the aggregated risk need to be converted into a comparable value. By
comparing the magnitude of these values, the ranking of a risk portfolio among all
the risk portfolios can be obtained. The larger the specific value is, the severer the
risk is.

In themethod of fuzzy set, to convert the fuzzy number into a crisp value, defuzzifi-
cation is applied (Zimmermann 2001). There aremany defuzzificationmethods, such
as max membership principle, centroid method, weighted average method, and so
on (Ross 2004). The centroid method is the most prevalent, defined as:

z∗ =
∫
µC(z) · zdz
∫
µC(z)dz

. (6.3)

In the method of interval number, the interval number can’t be converted into a
crisp value if there is only single interval number. Only there are several intervals
to be compared, the interval number can be transformed into a specific value. The
detailed process will be presented in the next section.

Lastly, the expectation of distribution is usually used to represent the distribution
of the objective in the method of the probability density function. The expectation
can be obtained with the usage of the Monte Carlo simulation method.

The four steps of the framework are necessary to aggregate the risk matrix. The
framework extracted here is more general. Under the framework, different methods
are allowed to resolve the aggregation problem. Furthermore, we can explore the
difference between the methods and show which one is more reliable.
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Chapter 7
Risk Matrix Aggregation Methods:
Introduction and Comparative Analysis

7.1 Fuzzy Set-Based Method

7.1.1 Similarities Between Risk Matrices and Fuzzy Sets

The fuzzy set theory, firstly introduced by Zadeh (1965), is used effectively in
ambiguous environments, especially where exists many subjective judgments (Chen
and Yu 2020; Goerlandt and Reniers 2016). Similar to the fuzzy set, the risk matrix is
widely used in vague environmentswhere are lack of precise data of consequence and
likelihood. The descriptions of two inputs of the risk matrix depend on the subjective
judgment of decision makers. For example, for a particular risk, the values of the
consequence and likelihood, which are judged by the decision makers, are not exact
values, but within the intervals (Kouvelis et al. 2011; Acharya et al. 2013; Bernard
et al. 2014).

In addition, several unstructured linguistic descriptions can be translated into a
structured one by fuzzy sets with fuzzy ‘if–then’ rule (Mamdani 1975; Rezaei et al.
2011):

If X1 is A1i , . . . and Xn is Ani , then Y is Bi for i = 1, 2, . . . , K .

Similar to the application in fuzzy logic, mapping the two inputs to a risk rating
in the risk matrix is also based on such an ‘if–then’ rule (Markowski and Mannan
2008; Duijm 2015). For example, in Fig. 7.2, there are nine rules and one of these
rules is if the consequence is ‘high’ and the likelihood is ‘low’, then the risk rating
is ‘Green’. Generally, when a risk matrix is given, the ‘if–then’ rules are determined
(Pickering and Cowley 2010; Ni et al. 2010; Levine 2012).

Last, as analyzed in Sect. 6.2.2, a specific risk value may belong to two or more
different risk ratings and the degree that the risk value belongs to a rating, which is
an analogy to fuzzy membership function, needs to be considered. In a fuzzy set,
supposed X = {x} is a space of objectives, A belongs to X, that is, A is the subset
of X. The membership function μA(x) ∈ [0, 1] represents the degree of x belonging
© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
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to A. The larger the μA(x), the higher the degree of membership of x in A (Zadeh
1965). In practical application, it is generally assumed that the membership function
is trapezoidal (Zadeh 1975; Ferdous et al. 2011; Rezaei et al. 2011), as shown in
Fig. 7.1.

The corresponding equation of trapezoidal membership function of fuzzy set 2 in
Fig. 7.1 is:

Fig. 7.1 A sample of
trapezoidal membership
function
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μset1(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x < a1,
x − a1
a2 − a1

, a1 ≤ x ≤ a2,

1, a2 ≤ x ≤ a3,
x − a4
a3 − a4

, a3 ≤ x ≤ a4

0, x > a4.

(7.1)

To explain where the uncertainty of the risk value belonging to the risk rating
comes from in detail, the risk matrix (this risk matrix is designed according to Cox’s
three axioms (Cox 2008), as shown in Fig. 7.2, is adopted. There are four ISO-risk
(IEC 2009) contours in the risk matrix and these contours pass through the highest
and lowest points of each risk rating. The dashed area in the figure represents the
shared parts of two adjacent ratings, which means that in such an area, two risks with
the same risk value may belong to two or more ratings. The points in the dashed area
are called abnormal risk points, and the points in the remaining part are called normal
risk points. Thus, there are five different area ratings, namely, explicitly rated green
(I), intangibly rated green and yellow (II), explicitly rated yellow (III), intangibly
rated yellow and red (IV), and explicitly rated red (V). Table 7.1 reports the area
proportion (AP) of each cell.

The cells with i th rating of consequence and j th rating of likelihood in Fig. 7.2
are represented by Ci j . From the table we can see, in most cells, only a part of the
risk values belongs to an explicit rating, while the rest are rated ambiguously. The

Table 7.1 Area proportion of each cell in a 3 × 3 risk matrix

Cells
of
Risk
Matrix

C11 C21 C31 C12 C22 C32 C13 C23 C33

Figure
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0
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0
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G

1/
3
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3

0 1/3
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1/3 2/3

Y
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3
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3

G

2/3
1

0 1/3

Y

1/3 2/3

2/
3

1

R

2/3 1

2/
3

1

AP of
I (%)

100% 69.31% 40.55% 69.31% 0% 0% 40.55% 0% 0%

AP of
II (%)

0% 30.69% 59.45% 30.69% 86% 21.64% 59.45% 21.64% 0%

AP of
III (%)

0% 0% 0% 0% 14% 40.55% 0% 40.55% 0%

AP of
IV (%)

0% 0% 0% 0% 0% 37.81% 0% 37.81% 43.28%

AP of
V (%)

0% 0% 0% 0% 0% 0% 0% 0% 56.72%
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risk values with ambiguous ratings correspond to the overlap of the two fuzzy sets
in Fig. 7.1 and it explains the source of uncertainty in risk ratings.

Based on the above analysis, the risk matrix can be transformed into other equiv-
alents with the usage of a fuzzy set. Through this transformation, some mature fuzzy
set aggregating techniques can be used to aggregate the risk matrix. Here, using a
fuzzy set to express the risk matrix is the core step for risk aggregating.

7.1.2 Fuzzy Membership in Risk Matrices

(1) Necessity of studying fuzzy membership

As stated before, in the risk matrix, two kinds of risk points, namely normal and
abnormal points, exist. The former refers to quantitatively equivalent points assem-
bling in the same risk rating and the latter in different risk ratings. Since these
abnormal points belong to two or more risk ratings, the degrees of membership in
different ratings have to be considered. Membership coincidentally reflects a risk
rating’s vagueness. However, ISO-risk contour is determined in the risk matrix, thus
the vagueness of a rating depends on which cells belong to the rating, namely, the
color scheme of the risk matrix. Hence, whether the vagueness exists in all reason-
able risk matrices needs to be established. But based on the following proposition,
we can assert that vagueness is inevitable in the risk matrix (Bao et al. 2018).

Proposition 1 Degrees of membership of points in the same rated cells in a risk
matrix cannot be all 1.

Proof First, it is clear that there must be two adjacent (upper-lower or left–right)
cells that have different ratings. Otherwise, the risk matrix will only have one rating,
which is meaningless for the risk matrix. More importantly, for any two adjacent
cells, there are countless ISO-risk contours passing through these two cells. If the
ISO-risk contour passes through two cells with different ratings, it means that there
are some risk values belonging to two ratings simultaneously, which implies that the
degree of the membership of the corresponding quantified risk in these ratings is not
1.

Proposition 1 illustrates the necessity of studying membership in the risk matrix.
Based on the above analysis, the following definition is proposed:

Definition 1 Risks are located in two kinds of intervals: overlapping and non-
overlapping. The former interval consists of a series of continuous risks whose
degrees of membership are less than 1 and the latter 1.

As the consequences and likelihoods of cells are different, no two cells can be the
same in theory. Thus, it is indispensable to argue whether we should consider cells
with the same rating as a whole or as individual cells. Cells with the same rating are
seen as a whole for the following reasons. First, the cells in the same rating have
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no significant difference. In addition, if each cell is regarded as an individual and
all possible scenarios are considered to be aggregated, on the one hand, it violates
the original intention of using a risk matrix where several different cells are approx-
imately divided into the same rating, on the other hand, such operation will lead to
the high resolution of risk matrix and the complexity of calculation will increase. As
a result, we only consider the rating of a risk, for example, we use fuzzy membership
function to express the Green rating rather than the single cell in the Green rating.

(2) Measure and property of fuzzy membership function

Another question about fuzzy membership is how does the degree of membership
change between 0 and 1? This is determined by the membership function. As shown
in Fig. 7.1, the membership function is assumed to be trapezoidal (Ferdous et al.
2011; John et al. 2014; Mentes et al. 2015). Therefore, under this assumption, the
correspondingmembership function of the riskmatrix shown in Fig. 7.2 can be drawn
as Fig. 7.3. Obviously, if the trapezoidal membership function is used, the degree of
membership increases or decreases linearly.

To test the truth of this assumption, we will find a reasonable method to calculate
the degree of membership. As shown in Fig. 7.2, the ISO-risk contour includes all the
points having the specific same risk value, and these points may belong to different
risk ratings. Intuitively, the length of the ISO-risk contour in the area of the particular
rating represents the information that the corresponding risk value belongs to this
rating. Hence, the ratio of the length of the partial contour to the overall length of
this contour can be used to measure the degree of membership of a risk in a rating,
namely:

Fig. 7.3 Trapezoidal
membership function of a 3
× 3 risk matrix

   

1/9 1/3 4/9 2/3 risk

(risk )
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μA(risk) = Lrisk,A

Lrisk
. (7.2)

In the above expression, Lrisk,A represents the length of the counter with the quan-
titative value risk in the region whose the risk rating is A. Lrisk represents the overall
length of this ISO-risk counter.

The length of the counter in the risk matrix can be calculated by the following
expression:

L =
∫ x2

x1

dl =
∫ x2

x1

dx

cos θ
=

∫ x2

x1

√
1 + tan2 θdx

=
∫ x2

x1

√
1 + f ′2(x)dx =

∫ x2

x1

√

1 + risk2

x4
dx

(7.3)

where x is the input variable corresponding to the consequence in a risk matrix and
f (x) is the output corresponding to the likelihood, namely, f (x) = risk

x ; θ is the
slant angle of the curve in an infinite small triangle during the integration process.

Since there are no elementary antiderivatives of the integrand, formula (7.4) cannot
be obtained by numerical calculation. In order to obtain the results, the approximate
algorithm, namely, the trapezoidal rule, is used. Under this algorithm, the length of
the curve can be approximately calculated as follows:

∫ b

a
f (x)dx ≈ b − a

2n
( f (x0) + 2 f (x1) + · · · + 2 f (xn−1) + f (xn)) (7.4)

where n is the number of subintervals of [a, b] and xi = a + i b−a
n , (i =

0, 1, 2, . . . , n).
It is notable that if the regions of ISO-risk contour in a specific rating are

segmented, i.e. the cells that are crossed by the curve with the same rating are not
adjacent, the degree of membership can be determined by the ratio of the length of
these segments to the length of the overall length. Furthermore, in a risk matrix, a
particular risk value may belong to several (more than 2) risk ratings, depending on
the design of the risk matrix.

Based on the reasonable method above, the problem of whether membership is
linearly increasing or decreasing is considered. The following proposition provides
the answer.

Proposition2 If the default riskmeasure, namely, risk=probability× consequences
is adopted to assess the risk, the membership function of risks in the overlapping
part of two ratings is not linear.

If the membership function within an interval increases or decreases linearly, the
degree of membership of the beginning, middle and ending points of the interval will
be on the same line. However, it is easy to find that the three membership degrees are
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not on the same line according to our method, which proves the truth of Proposition
2.

We claim that the membership functions of a risk in a rating are different in
different risk matrices, which comprise the following proposition.

Proposition 3 It is the design of the risk matrix, namely, how to assign a different
rating to the different cells in a risk matrix, that determine the membership function
of a risk in a rating.

A risk matrix is essentially a qualitative risk assessment tool and decision-makers
have their own perceptions of the rating of a risk. Their designs of the risk matrices
determine their perceptions of the degree to which a risk belongs to a rating. We
do not impose any assumption on the design of the risk matrices for the sake of
universality of our method.

Onemay questionwhywe should adopt themethodwe have introduced to achieve
the degree of membership instead of accepting the assumption that the membership
function is trapezoidal. We claim that there are two main reasons, as follows.

(1) Trapezoidal membership function results in a biased estimation of the
aggregated risk and thus is not accurate;

(2) The assumption method is not applicable where the membership function does
not change between 0 and 1, while our method for measuring the membership
function is more universal.

To explain the reason (1), we first give two kinds of membership functions of a
risk in risk rating Y (Fig. 7.4). The blue outline is drawn according to our method
and the red outline is a trapezoid as the assumption described before. One may see
that when the membership function increases from 0 to 1, it is convex and when the
membership function decreases from 1 to 0, it is concave. Due to the complexity of

Fig. 7.4 Membership of risk in rating Y
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Fig. 7.5 The second
derivative of membership
with respect to risk

formula (1), without strict mathematical proof, with the aid of computer we report
the second derivative of the membership function with respect to risk in the two
overlapping parts in Fig. 7.5.

Figure 7.5 shows that the second derivative of the membership relationship in the
increasing part is greater than 0, while the second derivative in the decreasing part is
less than 0, which supports our conjecture. Our conjecture first describes the shape
of the membership function and refutes the assumption that the risk membership
function in the overlap interval is linear. Moreover, it has the following important
property.

Property of themembership of risks in different ratings in a 3× 3 riskmatrix
as shown in Fig.7.2:

Themembership functions of risks in different ratings G, Y, and R are asymmetric.
Notice that when using a fuzzy set, defuzzification methods should be used to

get a crisp value of the fuzzy set that represents its magnitude. The centroid method
is a commonly used defuzzification method. When using the centroid method, the
results of the trapezoidalmembership function and the asymmetricmembership func-
tion must be different. Compared with the centroid of the trapezoidal membership
function, the asymmetric membership function’s centroid moves to the right, which
affects the accuracy of further operations. This is why the exact form of membership
function should be determined first.

To illustrate the second reason, we construct an arbitrary risk matrix without
considering the accuracy of its design, as shown on the left of Fig. 7.6. By using the
method before, the outline of the membership function of risk in each rating is drawn
on the right of Fig. 7.6. From the figure, we can clearly see that the maximum degree
of membership of the risk-rated green and yellow is not 1, while the minimum degree
of membership of the risk-rated red is not 0, which is contrary to the hypothesis that
the shape of the risk membership function is trapezoidal. In addition, there are still
shortcomings described in the first reason. For the above two reasons, the method
proposed is recommended to output an accurate membership function.
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Fig. 7.6 A fictitious 3 × 3 risk matrix and the corresponding membership functions achieved by
our method

(3) Fuzzy membership of aggregated risks

As analyzed in the Sect. 6.2.3, for any two fuzzy sets, the most used composition
method is the max–min rule shown in Zimmermann (2001):

μA∗B(z) = max
z=x∗ymin{μA(x), μB(y)} (7.5)

All risks are assumed to be independent of each other here. Therefore, by repeat-
edly using the rule in Eq. (7.5), the results of operations of two or more risk ratings
which can be seen as fuzzy sets including risk value and its degree of membership
can be achieved by the following rule:

μA1+A2+···+Ai+···+An (z)

= max
z=x1+x2+···xi+···+xn

min{μA1(x1), μA2(x2), . . . , μAi (xi ), . . . , μAn (xn)} (7.6)

where μAi (xi ) denotes the degree of xi in set Ai (or rating Ai ) and z = x1 + x2... +
xi ... + xn .

Next, we state how the above rules are applied to obtain the membership function
of a set of n different risks (ratings of these risks are A1, A2, ..., An) with the help of
Monte Carlo simulation in detail.

Step 1: Obtain the interval of the risk value in each rating of the evaluated risks.
First, generate a risk value randomly belonging to the interval, and n risk values are
generated in all. Second, calculate the corresponding n memberships of all the n risk
values. Both risks are recorded in a two-dimensional array (the two dimensions are
risk value and risk membership).

Step 2: Total risk of the n risk values is measured by the sum of all risk values,
denotedby Rs ,where s presents the sth round.Andmembership of Rs is theminimum
of all memberships of single risks, denoted by μ(Rs).

Step 3: Repeat Steps 1–2 N times and we now have R1, R2, ...RN , and
μ(R1), μ(R2), ..., μ(Rn). Check if there are duplicate values of Rp(p = 1, 2, ..., N ).
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If Rp is duplicate (in this case, there are several memberships of Rp), membership
of Rp should be the maximum of all memberships of Rp. After the screening, there
are in total N ′ overall risk values and memberships. If the number of simulations is
large enough, we will obtain membership of each possible overall risk in theory.

(4) Defuzzification of fuzzy membership

Here, the centroid method is used to convert a fuzzy risk value into a crisp value.
The centroid method is presented as follow:

z∗ =
∫

μC(z) · zdz
∫

μC(z)dz
. (7.7)

However, in the simulation, due to the limited number of simulations, we cannot
obtain the degree of membership of every possible overall risk. According to the
definition of integral, if we choose m points of risk axis with the same step from
the lowest risk to the highest one and obtain the corresponding memberships of
these points, the defuzzification result according to the following formula will be
comparatively accurate (Ross 2004).

R =
∫

μ(r)rdr
∫

μ(r)dr
≈

∑
μ(r)r

∑
μ(r)

(7.8)

However, the limited number of simulations will also result in few duplicate
values, that is, generally, the true degree of membership of the risk value cannot be
obtained (the membership of a risk value we obtain is smaller than the true one). For
example, in Fig. 7.7, the degree of membership obtained is usually smaller than the
membership on the boundary. The problem that the membership of selected risk may
not be output in the simulation is solved with the following approximate method:

Step 1: Sort the two-dimensional array in ascending order according to risk.

Fig. 7.7 Distribution of
integrated risks with
simulation method
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Fig. 7.8 Checking accuracy of the method to find the centroid of a trapezoid

Step 2: Divide N membership samples into m groups: elements of membership
dimension in the array from 1 to N/m are in group 1; elements from N/m + 1 to
2 N/m are in group 2 and so on.

Step 3: Select the maximal element in each group and totally m elements are
chosen.

Step 4: Select m risk values: rmin,rmin + rmax−rmin
m , ..., rmax; where rmin and rmax

present the minimum and maximum risks, respectively.
To check the accuracy of this method, we apply it to a simple problem: calculate

the centroid of the left in Fig. 7.8. The exact value of the centroid is 7/9. After some
pretreatment and simulation, some sample points as shown on the right of Fig. 7.8
are obtained. According to formula (7.8), the simulation result was 0.7760, close to
7/9. The variance of 100 simulations is 1.6230e−5, which is quite small. The above
analysis shows the accuracy of our method in obtaining the centroid of the graph.

So far, based on the previous analysis, the aggregation process can be concluded
as follows:

Step 1: Assess the n risks in their respective risk matrices to obtain the n risk
ratings.

Step 2: Calculate the fuzzy membership function of each of the ratings using
formula 7.5.

Step 3: UseMonte Carlo simulation to obtain the fuzzymembership of aggregated
risks.

Step 3.1: Obtain the interval of the risk value in each rating of the evaluated risks.
First, generate a risk value randomly belonging to the interval, and n risk values are
generated in all. Second, calculate the corresponding n memberships of all the n risk
values. Both risks are recorded in a two-dimensional array (the two dimensions are
risk value and risk membership).

Step 3.2: Total risk of the n risk values is measured by the sum of all risk values,
denotedby Rs ,where s presents the sth round.Andmembership of Rs is theminimum
of all memberships of single risks, denoted by μ(Rs).

Step 3.3: Repeat Steps a1 − a2N times and we now have R1, R2, ...RN , and
μ(R1), μ(R2), ..., μ(Rn). Check if there are duplicate values of Rp(p = 1, 2, ..., N ).
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If Rp is duplicate (in this case, there are several memberships of Rp), membership
of Rp should be the maximum of all memberships of Rp. After the screening, there
are in total N ′ overall risk values and memberships. If the number of simulations is
large enough, we will obtain membership of each possible overall risk in theory.

Step 4: Apply the defuzzification method to obtain the crisp value of a risk
portfolio, which can be compared in magnitude with the crisp values of other risk
scenarios.

7.2 Interval Number-Based Method

An interval number is a set of real numbers on a closed interval, which is often
denoted by [a, b], where a represents the lower bound of the interval number and b
represents the higher bound. Interval number is a fundamental tool often used in a
vague environment.

Let ã = [aL , aU ], b̃ = [bL , bU ], where
∼
a,

∼
b are both interval numbers. The

addition operations are shown as follows (Sengupta and Pal 2000, 2009; Sun and
Yao 2008):

∼
a + ∼

b = [aL + bL , aU + bU ]

Let ã = [aL , aU ], b̃ = [bL , bU ], la = aU − aL , lb̃ = bU − bL ,
Then

p(̃a ≥ b̃) = min
{
lã + lb̃,max(aU − bL , 0)

}

lã + lb̃
(7.9)

which represents the probability of
∼
a ≥ ∼

b. The relation can be denoted by
∼
a ≥ρ

∼
b.

Suppose there are N interval numbers, namely,
∼
a
i

= [aL
i , aUi ], i ∈ N , formula (7.9)

can be used to calculate p(
∼
a
i

≥ ∼
b
i
), i, j ∈ N , denoted by pi j , Furthermore,

vi = 1

n(n − 1)
(

n∑

j=1

pi j + n

2
− 1), i ∈ N (7.10)

Formula (7.10) represents the magnitudes of interval numbers ãi , vi can be used
to compare the magnitudes of different interval numbers.

Aggregating risk matrices by the aggregation method of interval number is fairly
simple, which is achieved just by using the addition operation of the interval numbers.
Specifically, each risk rating can be denoted by an interval number, by the addition
of interval numbers, we can obtain the overall risk denoted by an interval number.
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What should be paid attention to is an interval number itself does not have a v and
thus there is not a crisp value to represent its magnitude. Therefore, to obtain the
crisp value of a portfolio, we should collect all the interval numbers of all possible
portfolios. The detailed process is as follows:

Step 1: Assess the n risks in their respective riskmatrices to obtain the risk ratings.
Step 2: Denote the ratings of the evaluated risks by interval numbers, take the

specific risk matrix in Fig. 7.2 for instance,
∼
g = [0, 1/3],

∼
y = [1/9, 2

/
3],

∼
r = [4/9, 1]

(
∼
g,

∼
y,

∼
r represent interval numbers of rating green, rating yellow, and rating red,

respectively).
Step 3: According to the calculation principle of interval numbers, we can

aggregate the individual risks by the addition of interval numbers, the formula is
∼
a + ∼

b = [aL + bL , aU + bU ]. The use of interval numbers should correspond to the
ratings of risks in the portfolio.

Step 4: Use formula (7.10) to calculate vi to compare the different interval
numbers.

As analyzed before, notice only there are several intervals to be compared, the
interval number can be transformed into a specific value.

7.3 Probability Density Function-Based Method

As analyzed in Chap. 6, in risk matrices, given a risk value x , as shown in Fig. 7.2 the
probability of X ≤ x equals to the proportion of the dashed area in thewhole area of a
rating. Therefore, the cumulative distribution function is an explicit formulation with
respect to x . Then the probability density function is the derivation of the cumulative
function, namely, f (x) = F ′(x).

The Monte Caro simulation method can be used to obtain the distribution of the
overall (sum) risk of the risk portfolio. And the expectation of the distribution is
taken as the crisp value of the distribution.

The aggregation process is as follows:
Step 1: Assess the n risks to be aggregated in their respective risk matrices to

obtain the risk ratings of these risks.
Step 2: Obtain the probability density functions, such as fyellow(r) and so on, to

express the risk ratings.
Step 3: Generate n risk values from the n distributions of the n risks according to

their corresponding probability density functions. The sum of the n risk values is the
overall risk of the portfolio in a simulation. Denote the sum by: ri .

Step 4: Repeat step 3 N times and the mean of ri is taken as the expectation of
the distribution of the overall risk of the portfolio, namely, r1 + r2 + ...rN

/
N .



138 7 Risk Matrix Aggregation Methods: Introduction …

7.4 Comparison of Different Methods to Aggregate Risk
Matrices

In order to compare the threemethods, wewill apply these threemethods to a specific
example, and we will introduce the application in detail as the following.

7.4.1 An Illustrative Example

In this example, suppose there are four different risks,R1, R2, R3, R4, as shown in
Table 7.2. Due to the complexity of the environment, the data needed to assess these
risks is inadequate and decision makers want to know the relative severity of the
overall risk. Therefore, the risk matrix (As shown in Fig. 7.9) is used to evaluate
these risks. Notice that different risk matrices can be used to evaluate different risks,
and for simplicity, the same risk matrix is used in this example.

First, policymakers need to estimate the consequences and probabilities of each
risk. Table 7.2 provides a quantitative description of the consequences of each risk.

As is shown in the table above, R1, R2, R3, R4 are schedule delay, casualties,
improper operation, and environmental pollution respectively. Risk loss is a discrete
indicator in some of these four risks and thus needs to be converted into a continuous
indicator. For example, the number of casualties is usually measured in the number
of deaths or injuries, so it needs to be converted into the expenses spent. Any infinite
intervals are not considered in risk aggregation because they have the highest priority.
In addition, the probability interval corresponding to the three ratings of likelihood is
[0, 1/3], (1/3, 2/3), and (2/3, 1), respectively. How the probability interval is divided,

Table 7.2 Definition of consequences of three risk matrices

Risk Description of risk Low Medium High Extreme

R1 Schedule delay:
measures in days (unit:
days)

[0, 10] (10, 20] (20, 30] >30

R2 Casualty: measured in
expenses incurred for
treatment of injured
people (unit: $)

[0, 200 K] (200 K, 400 K] (400 K, 600 K] >600 K

R3 Misoperation: measured
by the corresponding
loss (unit: $)

[0, 50 K] (50 K, 100 K] (100 K, 150 K] >150 K

R4 Environmental
pollution: measured by
the fee curbing
environmental pollution
(unit: $)

[0, 100 K] (100 K, 200 K] (200 K, 300 K] >300 K
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Fig. 7.9 A 3 × 3 risk matrix
used to assess the 4 risks
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namely the length and number of the probability interval depend on the subjective
judgment of the decision maker.

After estimating the consequences and probabilities of the four risks, the decision
maker can obtain the risk rating for each risk based on the risk matrix in Fig. 7.9.
The risk rating of the four risks is shown in Table 7.3.

Based on the information above, three methods proposed are used to obtain the
severity of the overall risk.Obviously, in order to obtain the severity of a risk portfolio,
it is necessary to obtain the severity of all possible risk portfolios. Theoretically, there
are 81 (= 3 × 3 × 3) possible risk combinations. But some risk combinations have
the same risk value as the risk matrix used in this section is uniform. Therefore, we
can compress the number of different portfolios. After this operation, totally, there
are 15 different risk portfolios.

Based on the aforementioned methods, the results are exhibited in Table 7.4.
Firstly, we notice that some results are consistent with common sense, like the

scenario of four ‘red’ risks has a higher priority than the one of four ‘yellow’ or ‘green’
risks. Furthermore, the above tables provide some results that cannot be estimated
intuitively; for instance, the portfolio (riskred , riskgreen, riskgreen, riskgreen) has a

Table 7.3 Risk ratings of the
4 assessed risks

Risk Consequence Likelihood Rating

R1 Medium Medium Yellow

R2 High Low Green

R3 High Low Green

R4 High High Red
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Table 7.4 Ranking of the severity of different portfolios of the aggregated risks shown in Table
7.2 by different methods

Portfolios Fuzzy set Interval number Cumulative
distribution
function

Ranking

riskred , riskred ,
riskred , riskred

2.776/1a 17.056/1 2.776/1 1

riskred , riskred ,
riskred , riskyellow

2.444/0.862 16.041/0.875 2.445/0.862 2

riskred , riskred ,
riskred , riskgreen

2.175/0.750 15.453/0.803 2.182/0.752 3

riskred ,
riskredriskyellow ,

riskyellow

2.108/0.722 14.940/0.740 2.115/0.724 4

riskred , riskred ,
riskyellow ,

riskgreen

1.847/0.613 14.258/0.656 1.844/0.611 5

riskred , riskyellow ,

riskyellow ,

riskyellow

1.779/0.585 13.810/0.601 1.777/0.584 6

riskred , riskred ,
riskgreen , riskgreen

1.579/0.501 13.494/0.562 1.575/0.500 7

riskred , riskyellow ,

riskyellow ,

riskgreen

1.510/0.473 13.063/0.510 1.511/0.472 8

riskyellow ,

riskyellow ,

riskyellow ,

riskyellow

1.441/0.444 12.679/0.463 1.445/0.445 9

riskred , riskyellow ,

riskgreen , riskgreen

1.247/0.363 12.226/0.407 1.247/0.363 10

riskyellow ,

riskyellow ,

riskyellow ,

riskgreen

1.178/0.334 11.868/0.363 1.178/0.334 11

riskred , riskgreen ,

riskgreen , riskgreen

0.981/0.253 11.283/0.291 0.978/0.251 12

(continued)
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Table 7.4 (continued)

Portfolios Fuzzy set Interval number Cumulative
distribution
function

Ranking

riskyellow ,

riskyellow ,

riskgreen , riskgreen

0.910/0.223 10.959/0.251 0.910/0.223 13

riskyellow ,

riskgreen ,

riskgreen , riskgreen

0.647/0.113 9.961/0.129 0.643/0.111 14

riskgreen ,

riskgreen ,

riskgreen , riskgreen

0.375/0 8.913/0 0.376/0 15

a Two values of risk portfolios are given. One is the original value and the other is the normalized
one

higher ranking than the portfolio (riskyellow, riskyellow, riskgreen, riskgreen) which
is one of the main contributions of the methods.

Besides, we find that all three methods output the same ranking of the risk port-
folios. However, the ranking is not the final result we are to obtain. In the next step,
we will divide the 15 risk portfolios into several ratings for the purpose to obtain the
severity of a risk portfolio.

Under the normalized risk results, all 15 risk portfolios were divided into three
risk levels according to the threshold values of 1/3 and 2/3. Figures 7.10, 7.11, and
7.12 report the division of the risk portfolios calculated by three methods.
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Fig. 7.10 Risk levels of different scenarios (calculated by fuzzy set)
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Fig. 7.11 Risk levels of different scenarios (calculated by interval number)
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Fig. 7.12 Risk levels of different scenarios (calculated by cumulative distribution function)

It can be seen that, even if differentmethods are used to calculate, the classification
of the risk portfolio is uniform under the same dividing criteria, that is, the lowest
4 risk portfolios are assigned the level of 3, the largest 4 are of risk level 1, and the
remaining 2.

So far, by the aggregation methods, we reach our goal, namely, obtaining the
severity (or risk rating) of the overall risk. Therefore, in this example, since the 4
risks are estimated as ‘yellow’, ‘green’, ‘green’, and ‘red’, respectively, the overall
risk should have the risk rating of rating ‘2’, which is at a lower–moderate level.

7.4.2 Robustness of Different Methods

In the previous section, the risk portfolios obtained by the three methods are divided
uniformly. However, we find some differences between the risk value of aggregated
risk assessed with different methods. The distributions of different risk scenarios
obtained by a fuzzy set and cumulative distribution function are almost the same.
Furthermore, compared with the result obtained by a fuzzy set and cumulative distri-
bution function, the normalized values obtained by interval number are larger. Does it
raise the question that whether the interval number method overestimates the risk of
a portfolio?Wewonder whether these methods are robust under other circumstances.
This will be discussed in the following section.

Intuitively, in the risk matrix, the setting of consequence and likelihood is the
major factor influencing the aggregating results. In order to explore the robustness
of the three methods in different situations, another reasonable risk matrix different
from the previous section is designed. As shown in Fig. 7.13, the only difference
between the two risk matrices is that the intervals of inputs changed to [0, 1/4), [1/4,
3/4), and [3/4, 1], which will affect the membership of risk, the interval numbers of
risk ratings, and the distribution of points, the risk matrix contains.

Table 7.5 reports the new ranking of the possible portfolios of the four aggregated
risks.

Firstly, the results based on the methods of the fuzzy number and cumulative
distribution function are the same, while the result of the method of interval number
is different in the ranking of two scenarios (riskred , riskgreen, riskgreen, riskgreen)
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Fig. 7.13 The adjusted
3 × 3 risk matrix

Consequence
1/4 3/4 10

1/4
1

4/
3

Likelihood

and (riskred , riskgreen, riskgreen, riskgreen). The former two methods
show that (riskred , riskgreen, riskgreen, riskgreen) ranks higher than
(riskred , riskgreen, riskgreen, riskgreen), while the ranking judged by the method of
interval numbers is opposite.

Secondly, we observe that the values of the results of the fuzzy number and
cumulative distribution function are relatively close. In most cases, the values of
the results of the fuzzy number and cumulative distribution function are the same
until the percentile of the number, whereas the magnitude of vi which is obtained
by the method of interval number is far from the magnitude which the former two
methods get. We regard this as an implication that the methods of fuzzy set and of
the cumulative distribution function are more stable.

As shown above, the interval number-based method can’t obtain well results in
all cases. This is because interval numbers only take advantage of the maximum
and minimum risk values in each cell. In Fig. 7.14, the design of two kinds of risk
matrices is given. Although the design of these two risk matrices is different, the
corresponding interval number of each rating is the same. This indicates that the
interval number cannot describe the characteristics of each rating well, which also
leads to inaccurate results in some cases.

7.4.3 Comparison of the Three Aggregation Methods

Based on the analyses above, three different risk matrix aggregation methods from
the perspectives of comprehensibility, complexity, and explanation of riskmatrixwill
be compared in this section. Table 7.6 gives the overall comparison results, which
will be analyzed in detail next.
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Fig. 7.14 Two different 3 × 3 risk matrices

Table 7.6 Different risk matrix integration methods of comparison

Methods Comprehensibility Complexity Degree of explanation of
risk matrix

Fuzzy set Hard to comprehend Most complex High

Interval number Easy to comprehend Easiest Low

Probability density function Medium Medium Medium

Comprehensibility:Among the threemethods, the interval number-basedmethod
is the easiest to understand because of its simplicity and feasibility. Decision makers
only need to estimate the consequence and likelihood in their respective riskmatrices
to obtain the respective ratings and then get three interval numbers to add up. In
addition, the comprehensibility of the probability density function-based method is
between the fuzzy set method and interval number method. The fuzzy set-based
method is the most difficult for users to understand since it has many unfrequent but
significant concepts, such as membership function, defuzzification, and so on.

Complexity: Similar to the analysis of comprehensibility, the fuzzy set-based
method is the most complicated, as the process of obtaining fuzzy membership func-
tion and crisp value is relatively complicated. The method based on the probability
density function is in the middle of complexity, and the method of interval number
is the simplest.

Degree of explanation of risk matrix: Although the interval number-based
method is simple, it ignores a lot of information about the risk matrix. In other
words, it conveys less information than the fuzzy set-based method as it only focuses
on the maximum and minimum risk values in each cell and ignores the specific char-
acteristics of different risk matrices, such as the relative position and the relative size
of the cells. However, fuzzy sets and probability density function-based methods can
contain this information.
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As the above discussion shows, the interval number method is the least robust as
it is the easiest method. Compared with the fuzzy set-based method, the probability
density function-based method has a lower degree of explanation of risk matrix but
can output similar results, thus it could be taken as a substitution as the fuzzy set
method, thanks to its simplicity.
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Chapter 8
Three-Dimensional Risk Matrix:
Theoretical Basis and Construction

8.1 Background of the Three-Dimensional Risk Matrix

Risk assessment is a comprehensive process for assessing the possible effect that
an event or outcome will bring. Usually, the possible effect is quantified with the
aid of a risk measure, which outputs the risk measurement of the risk, given several
risk factors. For example, in the field of engineering, the most common measure
of risk is Risk = C × P , where C is the consequence of the events if they occur,
and P is the corresponding probability (Aven 2012; Willis 2007; Nieto-Morote and
Ruz-Vila 2011). The adopted risk measure relies heavily on the definition of risk. In
the measure mentioned above, the risk is defined as the expected consequence of the
event, which is one of the prevailing definitions of risk. Following are some common
risk definitions (for historical and recent definitions of risk, see Aven 2012):

(1) Risk = Expected value. When we focus on the damage of an event, risk can be
measured by the product of the possible loss and the corresponding probability
(Ale et al. 2015; Willis 2007). Sometimes, researchers adopt the (dis)utility of
the consequence as the effect on a decision maker, instead of the consequence;
in this case, the risk is the product of the (dis)utility of the consequence and
the probability (Ruan et al. 2015).

(2) Risk = Probability of an adverse event. This definition is usually employed
when the consequence of the event is fixed, or the consequence is unacceptable
no matter what the consequence is, and thus, only the probability is considered
(Campbell 2005). An event tree is one of the typical tools in which this measure
is embedded (Borgonovo and Smith 2011; Ferdous et al. 2011).

(3) Risk = Uncertainty. Understanding uncertainty is twofold. One is objective
(aleatory) uncertainty, which is an inherent characteristic of an event but
embodied in the event in the external world (Aven 2012). For example, in
a coin toss, we know the obverse or the reverse of the coin will appear, but
we are uncertain which one will appear. The other is subjective (epistemic)
uncertainty (Winkler 1996). One does not know what will happen and what
the consequence will be, depending on the risk assessor’s knowledge.
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In brief, the risk is essentially uncertainty-oriented. Traditionally, the risk is related
to the event (E), the consequence (C), and the probability (P), namely, a triplet (E,
C, P). However, in this case, the probability is only a special measure of uncertainty,
and thus, is not the foundation (Aven 2012). In practice, we estimate the probability
in various ways. For example, we may perform sample testing many times to obtain
the defect rate of a product; we may directly give the estimation of probability based
on our experience. No matter which method we use, probability itself cannot reflect
how we deal with the uncertainty based on our knowledge and what the degree of the
uncertainty is. For example, when assessing the uncertainty of an event, a decision
maker gives a probability of 0.8 while he or she thinks 0.9 is also an alternative, but
0.8 seems to be more accurate to him or her. Ball and Watt found that in different
situations, the same risk assessormay give different estimates of the consequence and
the probability (Ball and Watt 2013). It is revealed that uncertainty still exists in the
subjective judgment of probability itself. Therefore, recently researchers suggested
adopting uncertainty rather than probability in risk perspectives (Ho et al. 2010;
Durbach and Stewart 2012). In this sense, risk should be defined by a more accurate
triplet (E, C, U ), where U denotes the uncertainty of the consequence.

Uncertainty has been studied directly on the perception of risk. In 1978, Fischhoff
et al. studied the factors influencing the perception of risk (Fischhoff et al. 1978). They
explored nine factors: the voluntariness of risk, immediacy of effect, knowledge about
the risk by the person exposed to the risk source, knowledge about the risk in science,
control over the risk, newness, chronic/catastrophic, common/dread, and severity of
consequences. Given a particular risk scenario, the perceived risk is different for
the different participants, which reveals that in a broader sense, the risk of the same
event may vary for diverse stakeholders in the context of a risk assessment based
on their subjectivity, or more accurately, knowledge of the risk (e.g., knowledge
of the risk in science). For measuring risk, knowledge supports the decision for
determining the C and U of the risk. Therefore, let K be the knowledge of the risk of
an event, and the risk triplet is further extended as (E, C, U (K )). The accuracy of
this expression has been proved by several researchers. For example, Ball and Watt
found that even for the same stakeholder, different ratings of the consequence and
probability are assigned, and factors (such as information, psychosocial influences,
mental processing, knowledge and beliefs, and so on) are analyzed to explain the
difference (Ball and Watt 2013). Aven et al. provided the same suggestion for the
risk measure (Aven and Eidesen 2007).

When additional risk factors are involved, the equation for the risk measure is
more complicated and more difficult to express explicitly. For example, Risk =
Consequence×Probability is utilizedwhen only the consequence and the probability
of risk are considered. The problem is how to measure risk given additional factors.
In other words, how to obtain the output of the tetrad (E, C, U (K ))? There may be
multiple dimensions of knowledge, and intuitively, no explicit function outputs the
strength of knowledge incorporating all the dimensions.
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8.2 Three-Dimensional Risk Measure Considering
the Strength of Knowledge

The simplest form of risk measurement is the probability of an event, i.e., P(E).
A more complex measure that incorporates the consequences, complementing the
results as a probabilistic model, the risk metric becomes a function of the overall
estimate of the outcome and probability, i.e., risk = outcome and probability. In
order to make this function explicit, scholars and practitioners usually measure the
risk by taking the formof the product of the consequence andprobability, the expected
consequence. Usually, few models incorporate factors other than consequences and
probabilities into risk measures because it is difficult to form an explicit expression
to measure risk. Therefore, the definition of risk in the form of (E,C,U (K )), the
first thing to solve is to form an explicit expression. In the field of risk management,
the probability is the most commonly used to express uncertainty. To be precise, this
uncertainty refers to objective (accidental) uncertainty (Aven 2017a). As mentioned
earlier, using probability merely ignores how the evaluator gives an estimate of the
probability, that is, the subjective (cognitive) uncertainty of the evaluator does not
be reflected. The knowledge-based conditional probability P(K ) is used instead of
U (K ) in the triples (E,C,U (K )). In so doing, the risk measure of adding subjective
knowledge is still related to the concept of the most common probability, and also
gives the risk measure an explicit expression.

Definition 8.1 The risk measure with the dimension of knowledge. Given a risk,
the magnitude of the risk assessed considering the assessor’s knowledge is defined
as:

Risk = [C − (C − Cl) × (1 − M(KC)),C + (Cu − C) × (1 − M(KC))]×
[P − (P − Pl) × (1 − M(KP)), P + (Pu − P) × (1 − M(KP))]

(8.1)

where M(K ) is the measure of knowledge,Cl andCu are the lower bound and upper
bound of C respectively, and Pl and Pu are the lower bound and upper bound of P
respectively. In practice, given a risk assessment scenario, the upper and lower bounds
of the consequences are usually determined. For example, in an adverse event, the
most serious consequence (upper bound) is the loss of all owned resources. The best
consequence (lower bound) is that no resources are lost. For probability, the upper
and lower bounds are 1 and 0, respectively.

To begin with, we explain the reasonability of the risk measure in Eq. (8.1).

(I) In addition to probability, knowledge related to the assessment of conse-
quences have also been taken into account. This is because, in practice, the
consequences are usually diversified rather than singular (Cox 2008). Tools
used to analyze the consequences and probability of risk are not the same.
For example, when analyzing the consequences, tools such as flow charts,
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cost analysis, and so on are used; when analyzing probability, Bayesian
networks, event trees, and so on are often be employed. Therefore, we embed
the knowledge dimensions of consequences and probabilities.

(II) M(K ) can be understood as the degree of belief that describes the risk assessor
in his assessment of C and P. In general, the closer M(K ) is to 1, means that
the evaluator has more knowledge to support his assessment of C and P; and
the closer M(K ) is to 0, the more knowledge the evaluator can rely on when
making an assessment. less. Stronger knowledge means that the subjective
uncertainty of the evaluation of C or P is smaller, thus corresponding to a
narrower interval of C or P. In particular, when M(K ) = 1, it means that
the evaluator fully understands C and P, or that the estimates of C and P
reach a completely objective level. For example, if the evaluator has complete
knowledge, the estimated probability (probability of subjective judgment) is
the same as the frequency-based probability (objective probability). When
M(K ) = 0, this means that the evaluator knows very little about C and P,
so the evaluator can only give the upper and lower bounds of C and P, that
is, [Cl,Cu] and [Pl, Pu], this setting is in line with our common sense. The
range of M(K ) should be from 0 to 1.

(III) When the consequence is a fixed value, for example, the consequence is a
failure, and the definition of the risk at this time depends entirely on the
probability. Therefore, at this time, the C and M(KC) both in the definition
(8.1) are set to be 1, which is consistent with the definition of the second risk.

(IV) The expression in Eq. (8.1) is itself a representation of uncertainty. The
uncertainty levels of C and P are:

d(C) = (Cu − Cl) × (1 − M(KC), (8.2)

d(P) = (Pu − Pl) × (1 − M(KP). (8.3)

Intuitively, stronger knowledge is in line with a lower degree of uncertainty.
(V) Althoughwe embed the knowledge dimension for both consequencesM(KC )

and probabilities M(KP), the two are different. First, the knowledge that
supports the evaluator to make judgments about the consequences and prob-
abilities is different. Another more important difference is that, in general,
there is no correlation between the consequences of the assessment and its
knowledge strength M(KC), and there is a clear logical relationship between
the probability and the knowledge of the probabilityM(KP ) of assessment. In
practice, even if an evaluator has no knowledge of the consequences, an arbi-
trary value can be given to assess the consequences. However, it is different
for probability. Suppose an event has two possible consequences. If an eval-
uator knows little about the probability of these two consequences, then it is
very reasonable to think that the probability of each result is 0.5; given that
the probability of one of these consequences is 0.9, it is clear that the evalu-
ator has additional knowledge to support it in making such an assessment. As



8.2 Three-Dimensional Risk Measure Considering … 153

Fig. 8.1 An explanation of
the relation between P and
measure of the knowledge of
P

( )PM K

P
0

10.5

1

shown in Fig. 8.1, although 0.5 may not correspond to the lowest probability
in all cases, Fig. 8.1 shows a possible relationship between probability P and
its corresponding knowledge strength M(P). This means that P and KP are
not independent.

When M(K ) �= 1, according to the definition (8.1), the risk cannot be measured
by a certain value because it is the product of the two-interval numbers. As M(K )

gets closer to 0, the interval between C and P becomes larger, because the lower the
knowledge strength, the more choices C and P the evaluator faces. Therefore, the
variance of the values of C and P appearing in the respective intervals can be used to
reflect the magnitude of the uncertainty. Given an interval number [a, b], the decision
maker does not have any distribution information about its corresponding variable
X in the interval, so it can be assumed that the variable X is evenly distributed in [a,
b]. Therefore, the variance of X is (b−a)2

12 . According to this, the variances of C and

P are respectively (d(C))2

12 and (d(P))2

12 . The final value of the risk measure is:

Risk = C × (1 + VarC

Varmax
) × P × (1 + Var P

Varmax
)

= C × (1 + ((Cu − Cl) × (1 − M(KC))2

(Cu − Cl)2
) × P

×(1 + ((Pu − Pl) × (1 − M(KP))2

(Pu − Pl)2
)

= C × (1 + (1 − M(KC))2) × P × (1 + (1 − M(KP))2).

(8.4)
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In Eq. (8.4), VarC
Varmax

and Var P
Varmax

are used to normalize the uncertainty caused by
different knowledge strengths, so that they vary from 0 to 1. It can be seen from
the derivation that the normalized form makes its uncertainty not affected by the
boundaries of C and P, but only related to the strength of knowledge, and this is a
reasonable setting.

According to Eq. (8.4), in terms of our common sense, the risk of higher conse-
quences and possibility will have greater risks. In addition, repairing C and P may
reveal that if the risk assessor has a lower level of belief in the estimates of C and P,
in other words, his/her knowledge is less, the risk assessed will have a greater magni-
tude. This is the same as the analysis of (Aven 2017b), which proves the proposed
measures are reasonable.

8.3 Impact Factors of the Strength of Knowledge

The risk measure considering the knowledge dimension is given in the previous
section, where the embedding of knowledge is achieved by adding a knowledge
strength variable. This section describes which factors should be considered when
making a measure of knowledge strength.

Intuitively, in different risk assessment environments, knowledge strength can
be given from a global or local perspective. For example, when exploring factors
that influence risk perception, Fischhoff et al. overall perspective summarize two
categories of individual perceptions of risk and knowledge of existing scientific
knowledge (Fischhoff et al. 1978).When studying the riskmatrix for risk assessment,
Ball and Watt explored the role of matrix technology from a local perspective, such
as how to include risk exposure and scaling of inputs (Ball and Watt 2013).

Based on Aven’s work, we argue that although specific local knowledge is needed
in a specific context, a general framework that influences the strength of knowl-
edge from a global perspective is also necessary (Aven 2017a). According to Aven,
knowledge strength can be considered “weak” when the following conditions are
met:

(w1) The assumption is too simplistic.
(w2) data/information is lacking or unreliable.
(w3) Expert opinions are not uniform.
(w4) The phenomenon involved is misunderstood, lacking a predictive model or

the model results are unreliable.
(w5) The assessment team lacks expertise in the risk (this knowledge may be

known to others, but the assessment team does not know).
The setting here is based on Aven’s condition that the strength of knowledge is

“weak” (Aven 2017a), and also take the views of Fischhoff et al. (1978), Ball and
Watt (2013) as a reference. We summarized the factors that should be considered
in assessing the strength of knowledge in 5: (k1) public knowledge of risk, (k2)
personal knowledge of risk, (k3) model, (k4) data, and (k5) expert opinion. Their
detailed explanation is as follows:
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(k1) Regardless of whether the risk assessor has specific expertise on the risk,
public knowledge (e.g., reporting of related events, broadness of risk, and so on)
will affect the accuracy of the assessment of the consequences and probabilities.
At the same time, the accuracy of public knowledge will also have an impact. For
example, the instructions for a product may not be reliable, so the risk of using such
a product is miscalculated. Therefore, when considering public knowledge of risk,
its circumstance and reliability should be considered.

(k2) k2 refers to the knowledge acquired by individuals in the risk assessment
environment. It includes lessons learned from similar risks, individual professional
skills, and so on. Therefore, when you pay attention to your personal knowledge,
you need to consider its familiarity and professionalism.

(k3)Themodel is a key tool for supportingdecisionmaking.Regardless ofwhether
the risk assessor knows the relevant model in advance, it is necessary to find some
models to assist in the assessment of the consequences and probabilities. For model
knowledge, it is important to consider whether there are enough models to predict
the consequences and possibilities of the risks, the reliability of the model itself, and
the consistency of the results.

(k4)Data is required for themodel. If the original data is not available, the assumed
data is necessary to run the model. Obviously, knowledge about data should consider
the availability, authority, and adequacy of the data.

(k5) Expert opinions are sometimes more reliable than model predictions, which
reveals the importance of expert opinion. Risk assessment, which evaluates its conse-
quences and probabilities, can depend on subjective judgments, as well as other
experts’ opinions. The authority and consistency of expert opinions need to be
considered.

Based on the above analysis, in addition to the five categories of global knowledge
factors, the corresponding sub-factors are given. See Table 8.1 for details.

The factors influencing the strength of knowledge are summarized according to
some opinions of scholars. It is a general knowledge factor framework. In practice,
other factors can be included in the specific risk assessment scenario.

8.4 Measure of the Strength of Knowledge Based on Fuzzy
MCDM

In the previous section, we explored the impact factors that influence the strength of
knowledge. This section will explore how to gain knowledge based on these factors.

As analyzed above, knowledge strength is affected bymultiple knowledge dimen-
sions. Each factor affecting the strength of knowledge can be regarded as a decision
criterion. Each risk assessed can be regarded as an action in multi-attribute decision
making. Therefore, this section will use the relevant tools of multi-attribute decision
making to obtain the knowledge strength. Multi-attribute decision making methods
are often used in situations where multiple criteria cannot be used to connect these
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Table 8.1 Global factors
affecting knowledge strength
and its sub-factors

Global factors Sub-factors

k1. Public knowledge of risk k11. Spread of public
knowledge
k12. Reliability of public
knowledge

k2. Personal knowledge of risk k21. Familiarity with risk
k22. Professionalism of risk

k3. Model k31. Adequacy of the model
k32. Reliability of the model
k33. Consistency of model
results

k4. Data k41. Availability of data
k42. Authoritativeness of
data
k43. Adequacy of data

k5. Experts’ opinions k51. Authoritativeness of
experts
k52. Consistency of experts’
opinions

criteria with an explicit function to obtain a final score. This is also in line with
the factor characteristics of knowledge strength: it is not possible to connect all the
factors with an explicit function to obtain the final knowledge strength.

In a multi-attribute decision-making problem, the action is sorted according to
the weighted score of all indicators, or by using TOPSIS (Triantaphyllou 2000; Ho
et al. 2010). Obviously, when gaining the strength of knowledge, the purpose is to
obtain a measure. Therefore, only the method of weighted score can be adopted. The
method of comparing the advantages and disadvantages of TOPSIS is not desirable.
When using multi-attribute decision making methods to obtain knowledge strength,
it is necessary to obtain the score of each knowledge factor. Therefore, it is first
necessary to normalize the factors identified.

Normalized settings in the measure of knowledge strength: For all factors
affecting the strength of knowledge, the concept of “degree" needs to be used to
reflect their size. For example, for “public knowledge of risk”, when assessing its
size, you should ask “how much is the public knowledge of risk”. Without loss of
generality, we assume that all factors have a positive impact on knowledge strength
(negative effects can be converted to positive factors by adding negative words), and
the degree of influence ranges from 0 to 1.

In a multi-attribute decision problem, different criteria are usually non-
independent (or there is an interaction between the criteria). Therefore, the results
obtained by simply weighting the scores of all criteria are biased (Angilella et al.
2004). In general, two criteria are given, such as A and B, if they are related, then
where f is the measure of the criterion. When measuring knowledge factors, it is
difficult to ensure that all factors are independent of each other. For example, public
knowledge of risk (k1) clearly affects personal knowledge of risk (k2). Therefore,
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when measuring the strength of knowledge, it is obviously not possible to use the
traditional method of weighted scores, and the correlation between the criteria should
be taken into account.

The remainder will describe how to use the method of multi-attribute decision
making to gain knowledge strength.

8.4.1 Multi-Attribute Decision-Making Method Based
on Fuzzy Measure and Choquet Integral

Figure 8.2 shows the logical framework of the method presented in this section. The
main steps to obtain the strength of knowledge include: (1) obtaining the overall
weight of each knowledge factor, (2) obtaining the interaction between any two
knowledge factors, (3) obtaining the fuzzy measure of all indicators by using the
entropy value optimization method, (4) using Choquet integral to get the strength of
knowledge. The specific steps will be stated below.

(1) Overall weight of individual knowledge factors.

Given the factors thatmeasure the strength of knowledge, the next step is to determine
the weight of these factors. If these factors are independent, that is, they have no first
inertia with each other, then the scores of each factor multiplied by its weight can be
found first, and then these scores are added together to obtain a score of the overall
knowledge strength. However, it is difficult to find mutually independent knowledge
factors. For example, in the five global factors given in Sect. 8.3, public knowledge
affects individual knowledge, the accuracy of the data affects the accuracy of the
model, and the experts’ opinions may conflict with the evaluator’s own judgment.
Therefore, the biggest challenge in determining the weight of each factor is the
correlation between the processing factors.

To express the correlation between factors, scholars recommend the use of non-
additive measures or fuzzy measures (Angilella et al. 2004; Grabisch et al. 2008). A
fuzzy measure is defined as follows:

Overall weight of a single 
knowledge factor

Interaction of any two 
knowledge factors

Interaction analysis

Entropy 
optimization Fuzzy measure of 

knowledge factor

Choquet points

Knowledge 
intensity

Fig. 8.2 Framework for obtaining knowledge strength using fuzzymulti-attribute decision-making
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Definition 8.2 Fuzzy measure. Given a subset X of the set S and S, the function
μ : X → [0, 1] is called the fuzzy measure for X if the properties of the following
are satisfied (Grabisch 1997):

(1) μ(∅) = 0 and μ(S) = 1, and
(2) ∀M ⊆ N ⊆ S, μ(M) ≤ μ(N ).

Definition 8.3 Definition of Möbius transform of fuzzy measure. Given a non-
empty set S and any subsetX of S, for any functionμ : X → R, itsMobius transform
is defined as (Mikenina and Zimmermann 1999):

a(T ) =
∑

K⊂T

(−1)|T−K |μ(K ), ∀T ⊂ S. (8.5)

Möbius transform is reversible. When a is given, the arbitrary fuzzy measure has
the following relationship with its Mobius transform (Mikenina and Zimmermann
1999):

μ(T ) =
∑

M⊂T

a(M), ∀T ⊂ S. (8.6)

Theorem 8.1 If a(T ) is a fuzzy measure of the Mobius transformation, if and only
if the following conditions are true (Grabisch 1997):

(1) a(∅) = 0,
∑

T⊂S a(T ) = 1;
(2)

∑
i∈B⊂T a(B) ≥ 0, ∀T ⊂ S, ∀i ∈ T .

According to the definition of fuzzymeasures, the value of 2n−2 arguments needs
to be determined when using fuzzy measures (Grabisch 1996). Therefore, when n
is large, determining the fuzzy measure requires a huge amount of calculation. In
practice, in order to save computational effort, a 2-additive measure is typically used,
that is, more than two sets are not considered. The 2-additive measure is defined as
follows:

Definition 8.4 2-additive fuzzy measure. A fuzzy measure μ is referred to as 2-
addable fuzzy measures. If for all T satisfies |T | > 2, a(T ) = 0, and there is at least
one subset T of S, it contains two elements and satisfies a(T ) �= 0 (Mikenina and
Zimmermann 1999).

Therefore, according to Eq. (8.6), for K ⊆ S, |K | > 2, the 2-addittive fuzzy
measure is defined as:

μ(K ) =
∑

i∈K
ai +

∑

{i, j}⊂K

ai j (8.7)

Corollary 8.1 If a(T ) is a 2-additive fuzzy measure μ(T ) of measurable Möbius
transformation, the following conditions must be established (Grabisch 1997):
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(1) a(∅) = 0;
(2) ai ≥ 0, ∀i ∈ S;
(3)

∑
i∈S ai + ∑

{i, j}⊂S ai j = 1;
(4) ai + ∑

j∈T ai j ≥ 0, ∀i ∈ S, ∀T ⊂ S\{i}.
Under the fuzzy measure, the interaction of any two factors, such as A and B, has

the following relationship: (1) There is no interaction between the two, that is, the
two are independent, at this time μ(A + B) = μ(A) + μ(B), (2) There is a positive
interaction between the two, that is, there is positive synergy or complementarity
between the two, at this time μ(A + B) > μ(A) + μ(B), (3) there is a negative
interaction between the two, that is, both There is a negative synergy or redundancy
between them, at this time μ(A + B) < μ(A) + μ(B). For example, k3 and k4 are
clearly complementary factors, so it can be inferred μ(k3 + k4) > μ(k3) + μ(k4).

As mentioned above, in a fuzzy measure, each contained subset fi has an effect
on its weight. Therefore, you cannot just useμ( fi ) to express the weight of the factor
i. Shapley proposes an indicator of importance to reflect the overall contribution of
a member of the system, known as the Shaply value (Shapley 1952). It is defined as
follows (Mikenina and Zimmermann 1999; Grabisch 1997).

Definition 8.5 A fuzzy measure representing. A set S of n elements, the Shapley
value element xi ∈ S is defined by:

vi =
n−1∑

k=0

(n − k − 1!K !)
n!

∑

T⊂S\xi , T=k

(μiT − μT ) (8.8)

The interaction of any two elements is defined as:

Definition 8.6 In fuzzy measures μ, the interaction of any two elements is defined
as (Grabisch 1997):

Ii j =
n−2∑

k=0

(n − k − 2!k!)
(n − 1)!

∑

T⊂S\{xi , x j }, T=k

(μi jT − μiT − μ jT + μT ) (8.9)

It has been proven that the Shapley values of all elements satisfy the following
relationship (Shapley 1952):

n∑

i=1

vi = 1 (8.10)

In a multi-attribute decision problem, the weights of all indicators must satisfy∑n
i=1 wi = 1, which wi represents the weight of criterion i. vi analogies wi in

Eq. (8.10), and the difference is that the former considers the interaction between the
criteria, while the latter is based on the assumption that all criteria are independent.
When interactions are included between the criteria, it is obvious that wi cannot
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be weights, but only vi represents the importance of each criterion. The results of
directly multiplying them by the index scores have no theoretical explanation for the
rationality of the results. In fact, the analysis below will show that take

∑n
i=1 fivi as

the final score is wrong, that is, when there is an interaction, even if the overall weight
of the interaction is considered, the weighted average cannot be directly made.

For the assignment of vi , it can be obtained through the subjective judgment of the
decisionmaker, and only needs to satisfy Eq. (8.10). In order to reflect the uncertainty
of the decision makers in the assignment of vi , it can be allowed to fluctuate within
a certain range, that is, vi can correspond to the interval of [vd

i , v
u
i ].

Definition 8.7 If each factor corresponds to the interval of [vd
i , v

u
i ] in the knowledge

strength measure, then at least exist one set of V = (v1, v2, · · · , vn) is feasible for
the assignment in the interval of [vd

i , v
u
i ] when the following conditions are met:

⎧
⎪⎨

⎪⎩

vd
t ≤ vt ≤ vu

t , ∀t ∈ {1, 2, · · · , n},
n∑

i=1

vi = 1.
(8.11)

(2) Analysis of interaction between any two knowledge factors

Grabisch demonstrated the following relationship between interaction and its
corresponding Möbius transformation (Grabisch 1997):

Ip(T ) =
∑

K⊂S\T

1

|K | + 1
ap(T ∪ K ),∀T ⊂ S, ∀p ⊂ S. (8.12)

Therefore, for the 2-additive measure, the interaction of any order can be written
as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I (∅) = a(∅) + 1

2

∑

i∈S
a(i) + 1

3

∑

{i, j}⊂S

a(i j)

I (i) = a(i) + 1

2

∑

j∈S\i
a(i j)

I (i j) = a(i j)

I (A) = 0, ∀|A| > 2.

(8.13)

By transforming the above equation group, equations can be obtained:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(∅) = I (∅) − 1

2

∑

i∈S
I (i) + 1

6

∑

{i, j}⊂S

I (i j)

a(i) = I (i) − 1

2

∑

j∈S\i
I (i j)

a(i j) = I (i j)

a(A) = 0, ∀|A| > 2.

(8.14)

According to Corollary 8.1, the following conditions related to I (i j)must be met:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(a)
∑

i∈S
ai +

∑

{i, j}⊂S

ai j = 1

(b) ai +
∑

j∈T
ai j ≥ 0, ∀i ∈ S, ∀T ⊂ S\{i}.

(8.15)

For condition (a), we have:

∑

i∈S
ai +

∑

{i, j}⊂S

ai j =
n∑

i=1

a(i) +
∑

{i, j}⊂S

Ii j

=
n∑

i=1

(I (i) − 1

2

∑

j∈S\i
I (i j)) +

∑

{i, j}⊂S

Ii j

=
n∑

i=1

I (i) − 1

2

n∑

i=1

∑

j∈S\i
I (i j) +

∑

{i, j}⊂S

Ii j

=
n∑

i=1

I (i) = 1.

(8.16)

Therefore, condition (a) is always true. For condition (b):

ai +
∑

j∈T
ai j=I (i) − 1

2

∑

j∈S\i
I (i j)+

∑

j∈T
Ii j

=I (i) − 1

2

∑

j∈S\T
I (i j) + 1

2

∑

j∈T
Ii j

≥ I (i) − 1

2

∑

j∈S\i
|I (i j)|

(8.17)

Proposition 8.1 Condition (b) will be established if the following conditions are
true:
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∀T ⊂ S, ∀i ∈ T, ∀ j ∈ T \i, I (i) ≥ 1

2
(n − 1)|I (i j)|. (8.18)

Proof According to the condition (8.18), we have:

∀ j ∈ S\i, I (i) ≥ 1

2
(n − 1)|I (i j)| ⇒ (n − 1)I (i) ≥ 1

2
(n − 1)

∑

j∈S\i
|I (i j)|

⇒ I (i) ≥ 1

2

∑

j∈S\i
|I (i j)|

(8.19)

And thus:

ai +
∑

j∈T
ai j ≥ I (i) − 1

2

∑

j∈S\i
|I (i j)| ≥ 0 (8.20)

According to Eq. (8.18), we can get the boundary of any two factor interactions:

∀T ⊂ S, ∀i ∈ T, ∀ j ∈ T \i, |I (i j)| ≤ min { 2I (i)/(n − 1), 2I ( j)/(n − 1)}
(8.21)

As mentioned above, interaction can be understood as a complementary or redun-
dant relationship between factors. In practice, it is difficult for decisionmakers to give
accurate estimates of interactions. Therefore, based on the boundary of interaction
(8.21), the estimation of interaction is obtained in the following way.

Step 1. According to the boundary of the interaction, the interaction is divided
into N parts, [−B,−B+ 2B

N ), [−B+ 2B
N ,−B+ 4B

N ), . . . , [B − 2B
N , B), among them

B = min { 2I (i)/(n − 1), 2I ( j)/(n − 1)} .
Step 2. Give each interval a textual explanation of the degree of interaction;
Step 3. The evaluator selects an extent of interaction according to the descrip-

tion of the text in step S2, corresponding to one of the intervals, [−B,−B+ 2B
N ),

[−B+ 2B
N ,−B+ 4B

N ), · · · , [B − 2B
N , B), and is recorded as Bi j = [Bd

i j , B
u
i j ).

An example of an interaction estimate is shown below:

Example 8.1 Divide the interval [−B, B] into 7 subintervals, namely,
[−B,− 5

7 B),[− 5
7 B,− 3

7 B), [− 3
7 B,− 1

7 B), [− 1
7 B, 1

7 B), [ 17 B, 3
7 B), [ 37 B, 5

7 B), and
[ 57 B, B). As shown in Fig. 8.3, the interaction of these seven intervals is explained as
follows: (1) high redundancy, (2) medium redundancy, (3) lower redundancy, and (4)
almost no interaction between the two factors. The role, (5) lower complementarity,
(6) medium complementarity, and (7) highly complementary. If an evaluator believes
that there is a medium complementarity between the two factors, then the interaction
corresponds to the interval [ 37 B, 5

7 B).
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5
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B−B−
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7
B− 1
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B− 1
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B 3
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High degree of 
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Medium degree of 
redundancy

Low degree of 
redundancy

Almost have not 
interaction

Low degree of 
complementarity

Medium degree of 
complementarity

High degree of 
complementarity

Fig. 8.3 Explanation of interaction in different intervals

(3) Solving Fuzzy Measures by Entropy Optimization

In the previous two subsections, we explore how to express the overall weight of a
single knowledge factor and the interaction between any two factors. The purpose
is to solve the fuzzy measure by transforming the abstracted fuzzy measure into the
overall weight of the image and the interaction, and then by the values of the overall
weight and interaction. Therefore, this section will first introduce how to use the
entropy optimization method to obtain the overall weight and the specific value of
the interaction, rather than the interval between the two.

The Shannon entropy of a variable x can be defined as:

H(x) =
n∑

i=1

h(xi ) (8.22)

where h(x) = −xi ln xi is called the Shannon entropy.
Shannon entropy is a concept proposed by Shannon in 1948 to indicate the degree

of uncertainty of a random variable (Shannon 1948). When a certain probability
distribution has only a limited amount of information given, there will bemany distri-
butions that satisfy the constraints. Jaynes found that in all distributions, only one
entropy was the largest. In the distribution corresponding to the maximum entropy,
there is no information that is not known (Jaynes 1957). Therefore, the principle of
maximum entropy can be used to determine the value of an unknown variable given
some constraints. According to Marichal’s research, the entropy value of a fuzzy
measure μ is defined as follows (Marichal 2002):

H(μ) =
n∑

i=1

∑

T⊂S\i

(n − |T | − 1)!|T |
n! h(μ(iT ) − μ(T )) (8.23)

For the 2-additive fuzzy measure,

H(μ) =
n∑

i=1

∑

T⊂S\i

(n − |T | − 1)!|T |
n! h(a(i) +

∑

j∈T
a(i j))

=
n∑

i=1

∑

T⊂S\i

(n − |T | − 1)!|T |
n! h(I (i) − 1

2

∑

j∈S\i
I (i j)+

∑

j∈T
Ii j ).

(8.24)
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Therefore, the overall weight and the interaction of risk factors can be obtained
by through the following optimization problem:

max H(μ) =
n∑

i=1

∑

T⊂S\i

(n − |T | − 1)!|T |
n! h(I (i) − 1

2

∑

j∈S\i
I (i j)+

∑

j∈T
Ii j )

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

vi = I (i),

vd
t ≤ vt ≤ vu

t , ∀t ∈ {1, 2, · · · , n},
n∑

i=1

vi = 1,

∀T ⊂ S, ∀i ∈ T, ∀ j ∈ T \i, Bd
i j ≤ I (i j) ≤ Bu

i j .

(8.25)

The exact value of the sum can be obtained by solving the above optimization
problem, and then the correspondingMobius transform is obtained by the Eq. (8.18),
and then the corresponding fuzzymeasure can be obtained according to the Eq. (8.8).

(4) Using Choquet Points to Gain Knowledge Strength

In the multi-attribute decision problem, when there is an interaction between the
criteria, the score of an action cannot be obtained by a simple weighted average
method. In this case, the most representative fuzzy integral, the Choquet integral,
is usually used to integrate the final score (Marichal 2002; Marichal and Roubens
2000).

Definition 8.8 Definition of discrete Choquet integral. Given a set S, containing
elements (x1, x2, · · · , xn), the discrete Choquet integrals of functions f : S → R+
for fuzzy measures μ are:

Cμ( f (x1), f (x2), · · · , f (xn)) =
n∑

i=1

( f (x(i)) − f (x(i−1)))μ(A(i)) (8.26)

where the subscript (i) represents a permutation of all elements in the set, such that
so that f (x(1)) ≤ f (x(2)) ≤ · · · ≤ f (x(n)), and A(i) = {x(i), · · · , x(n)}.

The following is an example of a specific algorithm for Choquet integrals.

Example 8.2 Assume that knowledge strength requires consideration of three
knowledge factors A, B, and C. The fuzzy measures corresponding to all of their
possible subsets are: μ(A) = 0.3, μ(B) = 0.4, μ(C) = 0.5, μ(A, B) = 0.6,
μ(A,C) = 0.6, μ(B,C) = 0.6, and μ(A, B,C) = 1. In addition, the scores of the
three factorsA,B, andC are respectively xA = 0.9, xB = 0.6, and xC = 0.3, and then,
according to the Choquet score, the final knowledge strength is (xC − x0)μ(A, B,C)

+ (xB − xC)μ(A, B) + (xA − xB)μ(A) = 0.489.

In the normalized setting in the knowledge strengthmeasure, the knowledge factor
scores from 0 to 1, and according to the Eq. (8.23), it is easy to prove:
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0 < Cμ ≤
n∑

i=1

( f (x(i)) − f (x(i−1))) = max{ f (x1), · · · , f (xn)} ≤ 1 (8.27)

Example 8.3 In a risk measure, three risk factors A, B, C are included. The fuzzy
measures of the subsets are: μ(A) = 0.3, μ(B) = 0.4, μ(C) = 0.5, μ(A, B) = 0.6,
μ(A,C) = 0.6, μ(B,C) = 0.6, and μ(A, B,C) = 1. Given a risk, the scores
assigned to each factors are: xA = 0.9, xB = 0.6, and xC = 0.3. Then the Choquet
integral of the risk is (xC − x0)μ(A, B,C) + (xB − xC)μ(A, B) + (xA − x B)μ(A)

= 0.489.

Therefore, the final knowledge strength is also from 0 to 1, which is why the
knowledge factor’s score range is set to 0 to 1 in the normalized setting in the
knowledge strength measure.

The fuzzy measure of any subset of knowledge factors can be obtained from the
work of the previous three subsections, and then the final knowledge strength can be
obtained by Eq. (8.26).

8.4.2 Knowledge Strength Under Multi-Layer Factors

Section 8.4.1 describes how to measure knowledge strength using fuzzy multi-
attribute methods, and the method is based on the setting of single-layer factors,
that is k1, k2, k3, k4, and k5. But each global factor contains several local factors,
which means that the factors are hierarchical. In practical applications, there may be
cases where each factor contains multiple layers.

This section describes how to handle this multi-level factor. Given the multi-level
factor shown in Fig. 8.4, if fl is at layer l and has factors of k sub-factors, then the
score Sl is:

Sl =
k∑

i=1

( f (xl−1
(i) ) − f (xl−1

(i−1)))μ(Al−1
(i) ) (8.28)

where, f (xl−1
(i) ) represents the score of l-1 layer’s sub-factor, μ(Al−1

(i) ) indicates the
corresponding fuzzy measure.

Layer 1

Layer 2

Layer 3

Factor 1 Factor 2 Factor 3

Factor 1.1 Factor 1.2

Factor 1.1.1

Fig. 8.4 Illustration of the knowledge factors in multiple layers
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Equation (8.24) is also a Choquet score. Regardless of the factor of which layer,
you can get the score of the factor from the lowest factor integration.

8.4.3 Knowledge Strength Under Multiple Decision Makers

When acquiring the strength of knowledge, it is common formultiple decisionmakers
to exist at the same time. Suppose that m decision makers simultaneously evaluate
the strength of knowledge. For the decision maker k, the overall weight is evaluated
as (v

(k)
1 , v

(k)
2 , . . . , v

(m)
2 ). Then for the x factor, the score is:

vx =
m∑

i=1

tiv
(i)
x (8.29)

where ti represents the weight of the i decision maker.
For the decision maker k, the interaction effect is evaluated as B(k)

xy =[
Bd(k)
xy , Bu(k)

xy

)
, and then, the integration interaction is:

Bxy =
[

m∑

i=1

ti B
d(i)
xy ,

m∑

i=1

ti B
u(i)
xy

)
(8.30)

According to Eqs. (8.29) and (8.30), if a decision maker gives a score for each
factor, then the strength of knowledge can be derived from Eq. (8.26). If multiple
decision makers participate in the assessment, and for the decision maker k, whose
Choquet score is S(k), then the ultimate integrated knowledge strength is:

S =
m∑

i=1

ti S
(i) (8.31)

8.5 Construction of Three-Dimensional Risk Matrices

Based on the work before, this section will explore how to build a three-dimensional
risk matrix of consequences, probabilities, and knowledge strength based on new
risk measures and use it for risk assessment.

The construction of the risk matrix depends on the specific application scenarios
and the decision makers’ requirements for the risk matrix.

In the traditional risk matrix, the criteria for risk assessment are composed of
consequences and probabilities. When constructing a risk matrix, the inherent risk
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measure is Risk = C × P . We showed how to use the sequential update method to
obtain a two-dimensional matrix in Chap. 3.When adding the knowledge dimension,
although the riskmatrix changes from two-dimensional to three-dimensional, and the
risk measure becomes Risk = C × (1+ (1−M(KC ))2)× P× (1+ (1−M(KP))2),
the sequential update method still is applied. This section will show how to use the
sequential update method to design a three-dimensional risk matrix.

As with the two-dimensional risk matrix, as for three-dimensional risk matrix,
the following basic information should also be obtained first:

(1) The number of categories of consequences, losses, and knowledge strength.
(2) The interval corresponding to the consequences, losses, and knowledge

strength.
(3) Distribution of consequences, losses, and knowledge strength.
(4) The number of risk levels of the risk matrix or α.

It should be noted here that we integrate the knowledge strength of the conse-
quences and the probability into the knowledge strength, that is, the integrated
knowledge strength is (1 + (1 − M(KC))2)(1 + (1 − M(KP))2).

It is assumed that the decision makers based on this basic information give the
following requirements for the risk matrix of the required construction:

(1) The consequences, losses, and knowledge strength are divided into three
categories, namely “high”, “medium”, and “low”.

(2) After the normalization of the consequences, losses and knowledge strength,
the intervals corresponding to “high”, “medium” and “low” are (0, 1/3], (1/3,
2/3], (2/3, 1].

(3) There is no special information about the distribution of consequences, losses,
and knowledge strength, so it is assumed that they are evenly distributed on
their respective axes.

(4) The number of risk levels is four.

Based on the above information, the following two steps are required:
Step 1: Obtain a pairwise comparisonmatrix. In the three-dimensional riskmatrix,

the cells become unit blocks. The effect of the new risk measure is that the numerical
comparison of the points is based on Risk = C × (1 + (1 − M(KC))2) × P ×
(1 + (1 − M(KP))2), other than Risk = C × P . While the principle is still Pr(a >

b|a ∈ A, b ∈ B ) ≥ α, α > 0.5 when comparing the two-unit blocks, where a and b
are two variables, which represent any point of the unit blocks A and B respectively.

Step 2: Rating according to the pairwise comparison matrix. The rules are consis-
tent with the design of the two-dimensional risk matrix. When ap+1 < N1 + N2 +
· · ·+ Np, the level of the unit block is unchanged. When ap+1=N1 + N2 +· · ·+ Np,
the risk level is increased by one level.

According to the above steps, a 3×3×3 risk matrix can be finally formed, and its
design is shown in Fig. 8.5. In the risk matrix, the unit blocks with the consequences,
probability, and knowledge strength (high, high, low) have the highest risk (red),
which is consistent with the conclusion of Aven (2017a), while red The three blocks
adjacent to the block are ranked second (yellow), and the consequences, probability,
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0

1

0

1/3

2/3

1/3

2/3

1
2/3

1/3

1

0

Low

Low
Low

MediumMedium

Medium

High

High High

Fig. 8.5 3 × 3 × 3 risk matrix based on consequences, probability, and knowledge strength

and knowledge strength are (high, medium, medium), (medium, high, medium),
(medium, medium, high), and (high, high, low). The four-unit blocks of the high and
low have the third highest level (blue) and the remaining unit blocks have the lowest
level (green).

References

Ale B, Burnap P, Slater D (2015) On the origin of pcds—(probability consequence diagrams). Saf
Sci 72:229–239

Angilella S et al (2004) Assessing non-additive utility for multicriteria decision aid. Eur J Oper Res
158(3):734–744

Aven T (2012) The risk concept—historical and recent development trends. Reliab Eng Syst Saf
99:33–44

Aven T (2017a) Improving risk characterisations in practical situations by highlighting knowledge
aspects, with applications to risk matrices. Reliab Eng Syst Saf 16:42–48

Aven T (2017b) What defines us as professionals in the field of risk analysis? Risk Anal 37(5):854–
860

Aven T, Eidesen K (2007) A predictive Bayesian approach to risk analysis in health care. BMC
Med Res Methodol 7

Ball DJ, Watt J (2013) Further thoughts on the utility of risk matrices. Risk Anal 33(11):2068–2078
BorgonovoE, SmithCL (2011)A studyof interactions in the risk assessment of complex engineering
systems: an application to space PSA. Oper Res 59(6):1461–1476

Campbell S (2005) Determining overall risk. J Risk Res 8(7–8):569–581



References 169

Cox LA (2008) What’s wrong with risk matrices? Risk Anal 28(2):497–512
Durbach IN, Stewart TJ (2012) Modeling uncertainty in multi-criteria decision analysis. Eur J Oper
Res 223(1):1–14

Ferdous R et al (2011) Fault and event tree analyses for process systems risk analysis: uncertainty
handling formulations. Risk Anal 31(1):86–107

Fischhoff B et al (1978) How safe is safe enough? A psychometric study of attitudes towards
technological risks and benefits. Policy Sci 9(2):127–152

GrabischM (1996) The representation of importance and interaction of features by fuzzy measures.
Pattern Recogn Lett 17(6):567–575

Grabisch M (1997) k-order additive discrete fuzzy measures and their representation. Fuzzy Sets
Syst 92(2):167–189

Grabisch M, Kojadinovic I, Meyer P (2008) A review of methods for capacity identification in
Choquet integral based multi-attribute utility theory: applications of the Kappalab R package.
Eur J Oper Res 186(2):766–785

HoW, Xu X, Dey PK (2010) Multi-criteria decision making approaches for supplier evaluation and
selection: a literature review. Eur J Oper Res 202(1):16–24

Jaynes ET (1957) Inf Theory Stat Mech Phys Rev 106(4):620–630
Marichal JL (2002) Entropy of discrete Choquet capacities. Eur J Oper Res 137(3):612–624
Marichal JL, Roubens M (2000) Determination of weights of interacting criteria from a reference
set. Eur J Oper Res 124(3):641–650

Mikenina L, ZimmermannHJ (1999) Improved feature selection and classification by the 2-additive
fuzzy measure. Fuzzy Sets Syst 107(2):197–218

Nieto-Morote A, Ruz-Vila F (2011) A fuzzy approach to construction project risk assessment. Int
J Project Manag 29(2):220–231

Ruan X, Yin Z, Frangopol DM (2015) Risk matrix integrating risk attitudes based on utility theory.
Risk Anal 35(8):1437–1447

Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(4):379–423
Shapley LS (1952) A value for n-person games. 307–317
Triantaphyllou E (2000) Multi-criteria decision making methods. Springer, US
Willis HH (2007) Guiding resource allocations based on terrorism risk. Risk Anal 27(3):597–606
Winkler RL (1996) Uncertainty in probabilistic risk assessment. Reliab Eng Syst Saf 54(2–3):127–
132



Chapter 9
Conclusions and Future Research

9.1 Conclusions

The risk matrix has been widely used in various fields mainly because it is a risk
assessment tool that does not rely too much on sufficient data, and it helps provide
quick risk assessment without heavy computational cost. Essentially, the risk matrix
is a qualitative risk assessment tool andhighly related to the stakeholder’s subjectivity.

This book provides several methods for resolving problems related to two impor-
tant topics of the risk matrix, namely, the rating scheme design and the aggregation.
The former issue is derived from the phenomenon that in various risk assessment
scenarios using riskmatrices, they usually do not tell how the adopted risk is designed
and current researches on this issue are spare.Another issue, risk aggregation, focuses
on the overall risk of a risk assessment context that containsmultiple risks. The aggre-
gation of risk matrices is claimed to be impossible by ISO, given several technical
obstacles. In this book, we mainly discussed the following issues in connection with
risk matrix design and aggregation.

• A sequential updating approach for the rating scheme design of risk matrix.
Although currently several apparent but very simple rules can be extracted from
the frequently used risk matrices, there is a lack of systematic, logical, scien-
tific, and convincing methods that can be used to guide the risk matrix design.
The sequential updating approach is the first proposed method that combines
principles from the perspective of decision and the algorithm for implementing
the design, overcoming some obvious disadvantages of the traditionally designed
risk matrices. The detail is presented in Chap. 3 together with some other existing
methods.

• The effect of different kinds of risk perception on the risk matrix design. The
risk matrix is a qualitative risk assessment tool that different perceptions related
to the scaling of inputs, the location of inputs, the input category membership,
the measure of risks, and the attitudes towards risks may affect the rating scheme.
We explore how the perceptions work in the process of designing a risk matrix.
This is explained in Chap. 4.
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• The criterion that can be used to assess the design of the risk matrix. We
consider that the lack of appropriate rules to design riskmatrices ismainly because
designers tend to think that designing riskmatrices is entirely a subjective process.
Moreover, these scholars did not have quantitative criteria to assess the perfor-
mance of the risk matrices they designed. In turn, reasonable criteria improve
the accuracy of risk matrix design. The criteria and corresponding quantitative
indicators are exhibited in Chap. 5.

• A general framework for risk aggregation of risk matrices. Although risk
matrices are declared unable to be aggregated by ISO, we overcome some
obstacles by using quantitative risk matrices and normalizing different types of
consequences. Four steps are the general framework contained are illustrated in
Chap. 6.

• Several detailedmethods for risk aggregation of riskmatrices. Themethods of
fuzzy set, interval number, and probability density function are proposed to aggre-
gate risk matrices for their conformance with risk matrices in some properties.
The technical steps and comparison of these methods are given in Chap. 7.

• Extension from the two-dimensional riskmatrices to three-dimensional ones.
The traditional risk matrices are two-dimensional since the risk measure is based
on risk = consequence× likelihood, which have two dimensions. Considering
that this risk measure ignores the strength of knowledge to support the estima-
tion of consequence and likelihood, we propose a risk measure containing three
dimensions, i.e., consequence, likelihood, and the strength of knowledge. The
measure of strength and the construction of three-dimensional risk matrices are
shown in Chap. 8.

These issues help a better understanding of how the flaws of traditional risk
matrices generate, how to deal with the subjectivity of the qualitative tools, and how
to improve the accuracy of risk assessment and further decision making.

9.2 Future Research

The risk matrices are frequently used based on personal subjective judgement of risk
related elements like the category of consequence and likelihood, the risk measure,
the risk acceptance, and so on. Despite these qualitative nature, the design and use
of risk matrices needs quantitative guidance. Therefore, in the future research of risk
matrix, the qualitative and quantitative methods should be combined. To be specific,
the following points are worthy of further research.

• Risk matrix design integrating subjective and objective methods. Subjectivity
here mainly refers to the fact that the boundaries of two adjacent ratings are not
so determined for a decision maker. Objectivity here mainly refers to the basic
requirement that the matrix design should obey a convincing logic. And thus
given some certain subjective boundaries, a risk matrix design method should
work based on its given framework.
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• Risk matrix aggretion considering risk dependence. The methods introduced
in this book assume that the aggregated risks are independent for simplicity.
However, this assumption is not always ture since risks usually mutually affect.
The aggregation of risk matrices considering risk dependence should start with
the risk measure of the aggregated risk of the risk assessment context with several
risks that interact.

• Riskmeasure combing objectivity and subjectivity. As stated in this book, a objec-
tive risk measure like risk = consequence × probabili t y, can not refelect the
perceived risk of a decision maker. More convincing risk measures that both obey
some objective rules and handle the decision makers’ subjectivity are necessary
for the risk matrix research in the future.
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